УДК 504.53.054:656(470.42)

ВОЗДЕЙСТВИЕ ЖЕЛЕЗНОДОРОЖНОГО И АВТОМОБИЛЬНОГО ТРАНСПОРТА НА БИОЛОГО-ПОЧВЕННЫЕ ОБЪЕКТЫ В УЛЬЯНОВСКОЙ ОБЛАСТИ

В.С. Гусарова, Е.В. Рассадина

Ульяновский государственный университет

Рассмотрен вклад железнодорожного и автомобильного транспорта в загрязнение окружающей среды г. Ульяновска и окрестностей неэлектрифицированной железнодорожной ветки Ульяновск-Инза, а также степень загрязнения почв и степень устойчивости Betula pendula.

Ключевые слова: железнодорожный и автомобильный транспорт, тяжелые металлы, нефтепродукты, биоиндикация, флуктуирующая асимметрия.

Введение. Для экологических систем автомобильные и железные дороги представляют собой отчужденную у природной среды полосу, искусственно приспособленную к движению автотранспорта и поездов с заданными техническими и экологическими показателями. Помимо самой отчуждаемой полосы существует зона влияния выбросов транспорта, имеющая определенные масштабы распространения и степень воздействия на биоту [6]. На долю железнодорожного транспорта в Российской Федерации приходится 80 % грузооборота и 40-50 % пассажирооборота транспорта общего пользования [3]. В Ульяновской области железнодорожный транспорт действует с конца XIX века, причем основные линии до сих пор неэлектрифицированы, и передвижение осуществляется за счет сжигания мазутного топлива (направления Ульяновск - Инза, Ульяновск -Елхово).

Цель исследования — выявление степени и характера воздействия автомобильного и железнодорожного неэлектрифицированного транспорта на биолого-почвенные объекты г. Ульяновска и Ульяновской области.

В задачи исследования вошло: 1) выявление наиболее загрязненных участков среды вдоль неэлектрифицированного железнодорожного полотна «Ульяновск – Инза» методом биологической индикации по интегральному показателю флуктуирующей асиммет-

рии поверхности листа Betula Pendula, с последующим выявлением количественных показателей загрязнения почв тяжелыми металлами и нефтепродуктами; 2) определение степени влияния автотранспорта на городские биолого-почвенные системы в районе приусадебных участков вдоль крупной автотрассы ПО показателям флуктуирующей асимметрии поверхности листа Betula Pendula и загрязнению почв тяжелыми металлами и нефтепродуктами.

Материалы и методы. Для выявления влияния транспорта исследовалась городская территория: 1) приусадебные участки вдоль крупной автомагистрали по ул. Урицкого; 2) территория вдоль автодороги по ул. Отрадная; 2) территории города, прилегающие к железной дороге (станция Ульяновск Центральный; район моста через р. Свияга по ул. Инзенская; поселок Борьба). Влияние железной дороги определялось и в загородной территории в местах крупных и средних железнодорожных станций направления Ульяновск – Инза, а также в местах прохода поезда без остановок: железнодорожные станции Вешкайма, Глотовка, Инза, участок между станциями Глотовка - Инза. Выбор вышеуказанных мест обследования обусловлен предположением, что на станциях поезда выбрасывают в атмосферу больше загрязняющих веществ, в связи с более продолжительным их там пребыванием. Поэтому можно предположить, что попадание углеводородсодержащих компонентов в почву происходит интенсивнее на станциях. В местах прохода поездов без остановок вероятнее было ожидать меньшую степень загрязнения [2, 5].

В работе исследовалось содержание подвижных форм ТМ в почвах атомно-адсорбционном методом, валовое содержание нефтепродуктов в почвах гравиметрическим методом. Анализ влияния загрязняющих веществ на растительность — Betula Pendula, произрастающую вдоль автомагистрали перед жилыми домами и вдоль линии железной дороги, проводился по методике Захарова по флуктуирующей асимметрии билатеральных морфологических признаков листьев [1].

Образцы почв и листьев березы отбирались в 20 м от железнодорожного полотна и в 5–10 м от автотрассы. Образцы почв отбирались с глубины 0–10 см. Фоновые значения для березы повислой отбирались в березовой посадке Кузоватовского района.

Результаты и обсуждение. Значение интегрального показателя стабильности развития

для Betula Pendula вдоль автомагистрали г. Ульяновска составляет 0,047–0,048 единиц (табл. 1). Это соответствует 3-му баллу величины стабильности по шкале В.М. Захарова, что свидетельствует о средней степени загрязнения окружающей среды по ул. Урицкого. Данное значение интегрального показателя характерно для автомагистралей города. Так, в Засвияжском районе вдоль крупной автотрассы по ул. Отрадной он составляет 0,047 единиц (3-й балл). Однако на ул. Отрадной не имеется частного сектора с приусадебными участками, а по ул. Урицкого приусадебные земельные участки используются населением для получения сельскохозяйственной продукции.

В посадке с. Коромысловка, где отбирались фоновые значения, величина асимметрии составляет 0,044 (2-й балл), что свидетельствует о слабом влиянии неблагоприятных факторов. Однако и в месте, удаленном от промышленного производства и выбросов автотранспорта, этот показатель свидетельствует о том, что загрязнение природной среды в районе все же имеется.

Таблица 1 Значения интегрального показателя асимметрии Betula pendula

Места отбора проб листьев Betula Pendula	Величина асимметрии	Балл стабильности развития по Захарову	Степень загрязнения среды
ж/д станция Ульяновск-Центральный	0,043±0,065	II	слабая
вдоль ж/д полотна в г. Ульяновске (у моста через р. Свияга)	0,046±0,065	III	средняя
вдоль ж/д полотна в г. Ульяновске (у поселка Борьба)	0,045±0,071	III	средняя
ж/д станция Глотовка	$0,054\pm0,060$	V	критическая
вдоль ж/д полотна между станциями Глотовка – Инза	0,043±0,074	II	слабая
ж/д станция Инза	0,056±0,096	V	критическая
автотрасса ул. Урицкого, г. Ульяновска	0,048±0,065	III	средняя
автотрасса ул. Отрадной, г. Ульяновска	0,047±0,065	III	средняя
посадка Betula Pendula в поле с. Коромы- словка Кузоватовского района	0,044±0,064	II	слабая

Хотелось бы обратиться к ответу на вопрос, почему листья растений увеличивают свою асимметрию в загрязненных условиях среды. Пользуясь терминологией Ю.В. Чайковского, это, вероятно, результат «снятия давления нормы» [3].

Вдоль железнодорожного полотна значения интегрального показателя асимметрии колебались от 0,043 до 0,056 единиц. Наиболее нарушена среда на железнодорожной

станции в п.г.т. Инза, где она характеризуется как критическая, а также на ст. Глотовка. Лучшие условия произрастания оказались в самом городе Ульяновске на центральной железнодорожной станции Ульяновск–Центральный и в месте прохода поездов без остановки (Глотовка – Инза) (табл. 1).

Содержание подвижных форм ТМ в почвах приусадебных участков вдоль городской автомагистрали следующие (табл. 2). Максимальное количество отмечено для участка на пересечении улиц Баумана и Урицкого. Здесь имеется максимальное содержание Cu, Ni, Pb, Cd (без превышения ПДК) относительно других участков и превышение ПДК по Zn в

1,5 раза. В целом по цинку превышение имеется в 1,2–1,5 раза во всех почвах кроме участка близ ул. Чайковского. Превышение ПДК по Мп в 1,1 раз отмечено только в 1 точке (ближе к пересечению с ул. Чайковского).

Таблица 2 Содержание подвижных форм ТМ в почвах вдоль автомагистрали, мг/кг

Места отбора почв	Cu	Ni	Pb	Cd	Mn	Zn
Урицкого, 14	0,25	0,40	2,1	0,15	7,0	31,0
Урицкого, 26	0,325	0,50	2,05	0,475	6,75	34,5
Урицкого, 44	0,0102	0,40	1,75	0,145	7,0	29,0
Урицкого, 74	0,087	0,45	1,52	0,105	15,5	17,5
Урицкого, 86	0,215	0,32	1,8	0,15	6,5	28,5
ПДК	3,0	4,0	6	0,5	14,0	23,0

Примечание. Полужирный шрифт – превышение ПДК.

Содержание нефтепродуктов во всех пробах почв превышает безопасную концентрацию (1 г/кг) и составляет 1,25–3,25 г/кг вдоль автомагистрали. Вдоль железной дороги превышение зафиксировано в г. Ульяновске у моста через р. Свияга и в п.г.т. Инза в 2,62 раза; у п. Борьба – в 1,67 раз, в р.п. Веш-

кайма — в 3,7 раз, в с. Глотовка — в 3,32 раза. На станции Ульяновск—Центральный превышение безопасной концентрации не отмечено, возможно, это связано с подсыпкой нового грунта, в месте движения поезда без остановки (Глотовка — Инза) — минимальное количество нефтепродуктов (0,5 г/кг).

Таблица 3 Содержание подвижных форм ТМ в почвах вдоль железной дороги, мг/кг

Место отбора проб	Cu	Ni	Pb	Cd	Mn	Zn
вдоль ж/д полотна	0,14	0,27	2,0	0,067	9,25	23,8
в г. Ульяновске						
(у поселка Борьба)						
ж/д станция Вешкайма	0,24	0,50	2,6	0,12	8,0	16,1
ж/д станция Глотовка	0,45	0,72	17,0	0,35	13,8	31,5
вдоль ж/д полотна	0,055	0,15	0,65	0,05	17,6	9,75
между станциями						
Глотовка – Инза						
ж/д станция Инза	5,82	0,38	11,0	0,19	5,75	22,5
пдк	3	4,0	6	0,5	14,0	23

Примечание. Полужирный шрифт – превышение ПДК.

Итак, 71 % проб по содержанию нефтепродуктов превышает порог благоприятного развития растительности. Содержание нефтепродуктов в местах стоянок поездов выше в 1,8 раз в среднем, чем в местах движения поездов без остановок. При загрязнении почв нефтепродуктами от 1 до 10 г/кг необходимо проводить мероприятия по усилению процессов самоочищения (рыхление, аэрация).

Превышения ПДК подвижных форм ТМ отмечены на станции в Инзе (по Cu в 1,9 раз,

Рb в 1,8 раз), на станции в Глотовке (по Pb в 2,8 раз, Zn в 1,03 раза), между станциями Глотовка — Инза отмечено превышение по Мn в 1,25 раза (табл. 3). Таким образом, в 20 % проб обнаружено превышение ПДК подвижных форм тяжелых металлов.

Заключение. Неэлектрифицированный железнодорожный транспорт в Ульяновской области оказывает большее воздействие на окружающую среду, чем автомобильный транспорт, о чем свидетельствует значительное увеличение степени асимметрии листьев

Betula pendula до критических значений на железнодорожных станциях. Метод биоиндикации растительности свидетельствует о средней степени загрязнения окружающей среды в городе Ульяновске под влиянием автомобильного транспорта. Превышение безопасных концентраций в почвах выявлено по нефтепродуктам, свинцу, меди и цинку.

- 1. Здоровье среды: методика оценки / В.М. Захаров [и др.]. М.: Центр экологической политики России, 2000. 68 с.
- 2. *Надеин, А.Ф.* Влияние железнодорожного транспорта на состояние окружающей среды / А.Ф. Надеин, С.Н.Тарханов, О.А. Лобанова // Экология человека. 2007. № 11. С. 14–16.

- 3. Охрана окружающей среды и экологическая безопасность на железнодорожном транспорте: учебное пособие / Н. И. Зубрев [и др.]; под ред. Н.И. Зубрева, Н.А. Шарповой. М.: УМК МПС России, 1999. 592 с.
- 4. *Чайковский, Ю.В.* Наука о развитии жизни. Опыт теории эволюции / Ю.В. Чайковский. М.: Товарищество научных изданий КМК, 2006. 712 с.
- 5. Чертков, П.В. Геоэкологическая оценка влияния Юго-Восточной железнодорожной транспортной системы на окружающую среду / П.В. Чертков // Проблемы региональной экологии. 2007. N 1. C. 29–35.
- 6. *Щербаков, А.П.* Биомониторинг загрязнения почвы газовыми выбросами автотранспорта/ А.П. Щербаков, И.Д. Свистова, Х.А. Джувеликян // ЭКиП: Экология и Промышленность России. -2001. № 6. C. 26–29.

THE RAILWAY AND AUTOMOBILE TRANSPORT INFLUENCE ON BIOLOGY-SOILS SISTEMS IN ULIANOVSK REGION

V.S. Gusarova, E.V. Rassadina

Ulyanovsk State University

Its shown in article the influence of non electrifications railway Ulianovsk - Inza and automobile transport on pollutes an environment in Ulyanovsk and its surroundings, the measure of soils contaminates and stability by Betula pendula.

Key words: railway and automobile transport, heavy metals, mineral oils, bioindication, fluctuation asymmetry.