ИНДИВИДУАЛЬНОЕ И ОБЩЕСТВЕННОЕ ЗДОРОВЬЕ

УДК 613.6+616-003.96+612.1/001.33

ИНДИВИДУАЛЬНО-ТИПОЛОГИЧЕСКИЙ ПОДХОД К КУПИРОВАНИЮ ДИСФУНКЦИЙ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ НА НАЧАЛЬНОМ ЭТАПЕ РАЗВИТИЯ ПЫЛЕВОЙ ПАТОЛОГИИ

Л.Н. Гондарева

Ульяновский государственный университет

Определены индивидуально-типологические особенности ЭЭГ-характеристик при начальных формах антракосиликоза у высокостажированных горнорабочих. Оценена эффективность БОС-тренинга для коррекции дизрегуляций ЦНС.

Ключевые слова: нейродинамическая структура ЭЭГ, пылевая патология, горнорабочие, БОС-кардиотренинг.

Введение. На современном этапе развития совершенствование технологий производства и оптимизация условий труда отстают от темпов наращивания производственных мощностей [4]. Ранее разработанные профилактические и реабилитационные мероприятия оказались недостаточно эффективными, о чем свидетельствует ежегодный рост числа больных с профессиональными заболеваниями [8]. В структуре профессиональных заболеваний у лиц, работающих на промышленных горнорудных предприятиях, доминируют пневмокониозы (39,2 %), из которых на антракосиликоз приходится 11,5 %. У 30-60 % обследуемых отмечаются донозологические состояния, сопровождающиеся нарушениями вегетативного баланса и снижением резервных возможностей организма. Это проявляется в росте психоэмоционального напряжения, нарушениях биоэлектрической активности миокарда, нарушениях регуляции ритма сердца, повышениях всех видов артериального давления, следствием чего является учащение случаев инфаркта миокарда и внезапной коронарной смерти, нередко на рабочих местах [6]. Изучение механизмов

формирования и развития нервных и сердечно-сосудистых дизрегуляций у горнорабочих при ранних проявлениях антракосиликоза с учетом индивидуально-типологических особенностей в этих условиях является остроактуальным и представляет научный и практический интерес. Проблема индивидуальной устойчивости организма к действию вредных производственных факторов является узлобазируется на биоритмологической структуре нервных процессов и отражает степень их устойчивости и адаптивной пластичности [9]. В настоящее время нет единого мнения относительно влияния индивидуально-типологических особенностей человека на характер компенсаторно-приспособительных донозологических механизмов регуляции функционального состояния под воздействием пылевого фактора. В связи с вышеизложенным донозологическая оценка взаимоотношений дизрегуляций психических, нервных и вегетативных процессов с клинико-физиологических позиций на ранних стадиях развития антракосиликоза и поиск немедикаментозных способов коррекции чрезвычайно актуальны.

Цель исследования. Выявить индивидуально-типологические особенности формирования интракортикального гомеостаза у горнорабочих угольных шахт с ранними проявлениями антракосиликоза и апробировать способ альтернативного (знакопеременного) кардиотренинга для купирования дизрегуляций.

Материалы и методы. Обследовано 107 горнорабочих шахт Карагандинского угольного бассейна в возрасте старше 50 лет со стажем работы в подземных пылевых условиях более 25 лет (высокостажированные горнорабочие). У 80,3 % рабочих в результате рентгенологического обследования были выявлены начальные антракосилитические изменения (группа «риска» по классификации код-01, AnSi-01) [8].

При объективном и субъективном обследованиях горнорабочих тщательно анализировались профмаршрут, гигиенические условия труда (по санитарно-гигиенической характеристике с места работы), амбулаторные карты. В комплексное клинико-физиологическое обследование кроме общеклинических, психофизиологических методов, метода вариационной пульсометрии входила запись электроэнцефалограммы (ЭЭГ) в лобнозатылочном отведении справа и слева (отведение Fp1-O1 и Fp2-O2 по международной системе 10-20). Для купирования дисфункций использовали модифицированный вариант разработанного нами кардиотренинга с обратной связью по кардиоритмограмме [1]. Для оценки эффективности купирования дизрегуляций в ЦНС испытуемые разделены на 2 группы: контрольную (КГ), получавшую традиционное медикаментозно-физиотерапевтическое лечение, и основную (ОГ), в которой кроме лечения проводили по 6 сеансов кардиотренинга с каждым исследуемым. ЭЭГ регистрировали с конвекситальной поверхности черепа от графитовых малополяризующихся электродов на 16-канальный «Полинейрограф» производства экспериментальномастерских производственных Института экспериментальной медицины РАМН (г. Санкт-Петербург) с компьютерной обработкой по двум программам. Первая программа анализировала нейродинамическую структуру ЭЭГ с оценкой условных вероятностей взаимного следования нейроритмов (бета-, альфа-, тета-, дельта-). На основании структуры ЭЭГ правого полушария все испытуемые были разделены на высоко- (І тип, корковое доминирование, условная вероятность взаимного следования альфа-волн от 0.757 ± 0.020 до 0.834 ± 0.010), средне- (ІІ тип, корково-лимбическое доминирование, взаимная условная вероятность следования альфаволн от 0.571 ± 0.020 до 0.704 ± 0.110) и низкоадаптивных (ІІІ тип, лимбико-стволовое доминирование, значения условной вероятности повторения альфа-волн от 0.337 ± 0.020 до 0.418 ± 0.020) [3].

Вторая подпрограмма позволяла оценивать межполушарные взаимоотношения по вероятности следования изоэлектрических состояний в ЭЭГ [10]. Для наглядного представления матриц условных вероятностей строились вероятностно ориентированные графы, вершинами которых являются компоненты ЭЭГ, а ориентация ребер графа указывает направления перехода между нейроволнами в первом случае и между полушариями во втором. Для количественного описания графов использованы понятия теории потоков в цепях, по которой вершина графа может служить источником потока, если разность между суммой входящих в нее и выходящих из нее потоков вероятностей будет положительной, или сохраняющей поток, если разность отрицательна [2].

Оценку общего десинхроноза проводили по индивидуальному чувству времени (индивидуальная минута — ИМ) [7]. Показано, что у высокоадаптивных лиц в условиях неблагоприятных воздействий на организм ИМ удлиняется, а у низкоадаптивных, напротив, укорачивается. Область нормальных значений ИМ — от 46,2 до 69,7 с. Эта область разделяется на три: от 46,2 до 47,6 с — для низкоадаптированных, от 47,7 до 62,8 с — для среднеадаптированных лиц, от 62,9 до 69,7 с — для высокоадаптированных лиц. Оценку достоверности различий проводили по t-критерию Стьюдента.

Результаты и обсуждение. В результате исследований выявлено, что у горнорабочих I типа со стадией AnSi-01 вероятность появления альфа-волн остается высокой и соот-

ветствует уровню коркового доминирования $(p\alpha=0.67\pm0.04)$ на фоне относительно невысоких вероятностей других нейроритмов $(p\beta=0,13\pm0,03; p\theta=0,11\pm0,05; p\Delta=0,10\pm0,03).$ Условная вероятность взаимного следования альфа-волн в ЭЭГ лобно-затылочного отведения справа составляет ра α =0,733±0,041. Функциональное альфа-ядро выражено, через него осуществляется взаимоследование бета-, тета- и дельта-волн (р $\theta\alpha$ =0,75±0,04; р $\Delta\alpha$ =0,07±0,02; р $\beta\alpha$ =0,53±0,003). Это свидетельствует об усилении координационных механизмов, обеспечивающих восприятие и сканирование поступающей в мозг информации и на этой основе - принятие адекватных решений с формированием целенаправленных программ адаптивного поведения. У лиц со II типом организации ЭЭГ со стадией AnSi-01 структура взаимоотношений нейроволн несколько «размыта» по сравнению с I типом. Усиливается формирование бета-ядра, особенно выраженное справа (р β =0,26±0,02). Вероятность появления альфа-волн снижена (рα=0,48±0,01). Повышена вероятность тетаи дельта-волн $(0.13\pm0.03 \text{ и } 0.13\pm0.01 \text{ соответ-}$ ственно). Условные вероятности взаимного следования нейроволн в ЭЭГ обоих полушарий для бета-волн повышены (рВВ справа и слева 0,354±0,032 и 0,301±0,044 соответственно), а для других нейроволн снижены справа и слева по сравнению с лицами I типа (раа справа и слева 0,612±0,022 и 0,503±0,035 соответственно; $p\theta\alpha = 0.45 \pm 0.02$ р $\beta\Delta$ =0,10±0,02 справа и р $\beta\theta$ =0,13±0,02 слева). Усиление взаимного следования бетаволн свидетельствует о развитии неспецифической активации левого полушария и его недостаточном участии в обработке поступающей информации, что ведет к формированию угнетенных состояний, нарушению восприятия. Концентрация активности вокруг бета-ядра и усиление связи бета-волн с другими компонентами ЭЭГ ведет к рассогласованию совместной перцептивной деятельности полушарий, усилению кортикальной возбудимости.

Структура взаимодействия нейроритмов у лиц III типа с AnSi-01 характеризуется дальнейшим «размыванием» по сравнению с

лицами I и II типов ($p\alpha=0.26\pm0.01$), а в области бета- и дельта-волн формируются новые функциональные ядра, особенно справа $(p\beta=0.60\pm0.13 \text{ и } p\Delta=0.27\pm0.02)$. Условная вероятность бета-волн максимальна для обследуемого контингента (р\$β=0,383±0,032 и 0,321±0,033 справа и слева соответственно), а для взаимоотношений «альфа – альфа», «тета – альфа», «бета – альфа» и «дельта – альфа» достигает минимальных значений $(p\alpha\alpha=0.28\pm0.01; p\theta\alpha=0.26\pm0.01; p\beta\alpha=0.26\pm0.01;$ $p\Delta\alpha = 0.25 \pm 0.01$). Такая нейродинамическая структура ЭЭГ может служить основой для усиления возбудимости, нарастания кортикального напряжения, ухудшения самочувствия, усиления тревожности.

После проведения реабилитационных мероприятий, включающих в КГ медикаментозное и физиотерапевтическое лечение, а в ОГ – еще и 6 сеансов альтернативного кардиотренинга, обнаружены следующие изменения. В КГ у лиц II и III типа с AnSi-01 отмечается тенденция к выравниванию функциональной активности обоих полушарий. Сумма вероятностей входящих и выходящих связей для левого полушария и лиц II типа ps=1,59±0,12; $pd=1,63\pm0,01$, что на 0,1-0,2 меньше исходных значений. У лиц III типа эти показатели ps=1,55±0,08 и pd=1,60±0,13. Взаимоотношения полушарий становятся более цикличными, идет выравнивание интенсивности информационных потоков с незначительным преобладанием вероятности потока слева направо (psd=+0,45 против pds=+0,33 у лиц II типа и psd=+0.5 против pds=+0.35 у лиц III типа). Это свидетельствует о снижении активации правого полушария за счет усиления тормозной функции коры.

В ОГ сочетанная с кардиотренингом реабилитация вызвала более выраженные изменения интракортикальных межполушарных взаимоотношений, причем этот эффект более выражен у лиц III типа. Усиливается межполушарное взаимодействие с восстановлением билатерального равновесия. Вероятность следования изоэлектрических состояний, соответствующих моменту максимальной готовности структуры или зоны мозга к восприятию информации, в пространственновременном межполушарном паттерне ЭЭГ

билатерально выравнивается (psd=0,530±0,070; pds=0,520±0,060), активность левого и правого полушарий в переработке информации становится одинаковой (ps=0,470±0,060 и pd=0,460±0,070). Нормализация межполушарного взаимодействия достигается за счет полного восстановления цикличности у лиц III типа с AnSi-01 в ОГ в отличие от таковых в КГ. Сумма вероятностей для обоих полушарий составляет р Σ =1,52±0,03, а вероятность информационного потока pds=psd=+0,45. У лиц I типа с AnSi-01 КГ в этих условиях купируется кортикальная возбудимость с незначительной остаточной активацией левого полушария при восстановлении баланса между возбудительными и тормозными процессами в правом полушарии. Интенсивность информационного потока снижается справа налево до pds=+0.4 и слева направо до psd=+0.3.

Таким образом, в ОГ отмечено повышение активности левого полушария, что свидетельствует о появлении пространственноорганизованных паттернов обеспечения целенаправленной деятельности мозга. Генерализованная активация коры больших полушарий мозга, напротив, затрудняет формирование адаптивных перестроек в функциональных системах вследствие разобщения активации глубоких структур мозга.

После проведения реабилитации в КГ у лиц с AnSi-01 изменения нейродинамической структуры ЭЭГ выражены незначительно. У лиц III типа по-прежнему сохраняется десинхронизация ЭЭГ с неспецифической активацией коры вследствие концентрации функционального бета-ядра, хотя и отмечается усивзаимоотношений ление альфа-волн $(p\alpha=0.26\pm0.02$ и 0.29 ± 0.02 ; $p\beta=0.41\pm0.05$ и 0.35 ± 0.04 справа и слева соответственно). Уровень бета-активности выше по сравнению с исходным состоянием. Другие составляющие нейродинамической структуры ЭЭГ не изменились (ра β , р θ β =0,41 \pm 0,05; р θ 0=0,11 \pm 0,01; р $\theta\theta$ =0,12±0,02; р $\Delta\theta$ =0,13±0,01 и не отличаются справа и слева).

У лиц II типа изменения более выражены, $p\beta$ =0,19±0,01 на фоне ослабления взаимоотношений между другими нейроритмами ($p\alpha$ =0,56±0,01 справа и 0,49±0,06 слева).

Значительно выражены взаимоотношения между альфа-волнами и тета-альфа-волнами (рассеровать, 0.02 и р0.02 справа и рассеровать ослаблены взаимоотношения «альфа — тета» и «бета — тета» (0,091±0,003 слева и 0,092±0,002 справа).

Наиболее выражены нейродинамические перестройки в основной группе. У лиц III типа отмечается усиление процессов стабилизации ЭЭГ на фоне «размывания» функционального бета-ядра (р β =0,28 \pm 0,08), усиления альфа-активности, усиления взаимоотношений других ритмов с альфа-ритмом (р α =0,41 \pm 0,04 и 0,35 \pm 0,02 справа и слева; р α =0,30 \pm 0,04; р β α =0,36 \pm 0,02; р Δ α =0,37 \pm 0,03). Ослаблены взаимоотношения «альфа тета» и «дельта тета» (р α 0=0,15 \pm 0,02; р Δ 0=0,15 \pm 0,03), что может свидетельствовать о снижении напряжения, повышении активности и работоспособности.

Значительные изменения нейродинамической структуры ЭЭГ отмечаются при сочетанном лечении у лиц I типа. В нейродинамической структуре ЭЭГ отсутствует функциональное бета-ядро (р β =0,29±0,02), ослаблены взаимоотношения и других нейроритмов с бета-ритмом, что может свидетельствовать о повышении специфической активации мозга. Усиливается концентрация альфа-ядра на фоне усиления взаимоотношений всех альфа-волн ритмов между собой $(p\alpha=0.72\pm0.04; p\alpha\alpha=0.761\pm0.001 \text{ и } 0.620\pm0.04$ справа и слева соответственно). Ослаблены взаимоотношения всех ритмов с волнами дельта-диапазона («ритма утомления»). Наиболее выражены взаимоотношения «альфа – альфа», «бета – альфа», «тета – альфа» и «дельта – альфа» как справа (0,76±0,03; 0.57 ± 0.01 ; 0.61 ± 0.02 ; 0.66 ± 0.01), так и слева $(0.78\pm0.06; 0.59\pm0.04; 0.69\pm0.08; 0.63\pm0.07).$ Ослаблены взаимоотношения «альфа – дельта», «тета – бета», «тета – дельта», «дельта – бета» $(0.091\pm0.006; 0.097\pm0.007; 0.120\pm0.008;$ 0.03 ± 0.0 соответственно).

Повышение альфа-активности в ОГ у горнорабочих с AnSi-01 при лечении, сочетанном с альтернативным кардиотренингом, свидетельствует о восстановлении высокого

уровня регуляторной устойчивости и стабилизации вегетативного управления. У лиц III типа формируется устойчивый предпатологический паттерн ЭЭГ, который сохраняется и после проведения традиционного лечения. У лиц с I типом организации ЭЭГ сохранены соматовегетативные резервы для формирования нового уровня функциональной регуляции.

Оценка уровня общего десинхроноза у горнорабочих с AnSi-01 показала начало формирования внутреннего десинхроноза во всех обследованных группах, так как отмечено сокращение индивидуальной минуты по сравнению с ее длительностью, характерной для уровня высокой адаптированности, причем у лиц III типа эти отклонения наиболее заметны (табл. 1). Состояния горнорабочих этого типа в большей ме-

ре соответствуют уровню средней адаптированности, как и состояния лиц II типа. Лица I типа в большей мере сохраняют высокий уровень адаптированности. Проведение стандартного комплекса реабилитационных мероприятий усиливает тенденции к сокращению ИМ у всех испытуемых, особенно выраженные у лиц I типа. Их состояние соответствует уровню низкой адаптированности, а состояние лиц II и III типа уровню средней адаптированности (табл. 1). Применение сочетанной с альтернативным биоуправлением (АБУ) ЧСС-реабилитации вызывает тенденцию к восстановлению чувства времени у всех испытуемых: состояние лиц I типа наиболее приближено к уровню высокой адаптированности, лиц III типа соответствует уровню средней и высокой адаптированности (табл. 1).

Динамика чувства времени

Таблица 1

Уровень	I тип	II тип	III тип
адаптивности	(высокоадаптивый)	(среднеадаптивный)	(низкоадаптивный)
До АБУ (КГ+ОГ)	n=11	n=20	n=60
	53,3–67,1 c	53,7–61,7 c	56,1–59,9 c
После АБУ (КГ)	n=5	n=7	n=18
	46,4–47,6 c	50,6–51,4 c	51,6–57,6 c
После АБУ (ОГ)	n=6	n=9	n=17
·	60,7–61,3 c	56,3–63,7 c	54,6–61,8 c
Норма	62,9–69,7 c	47,7–62,8 c	46,2–47,6 c

В табл. 1 приведена динамика чувства времени (индивидуальной минуты, с) у высоко- (I), средне- (II) и низкоадаптивных (III) горнорабочих с AnSi-01 после стандартного лечения (КГ) и лечения, сочетанного с АБУ ЧСС (ОГ). В нижней строке даны диапазоны нормы, соответствующие уровню низкой (III), средней (II) и высокой (I) адаптированности. (Под адаптивностью понимается способность к адаптации, а под адаптированностью – ее реальное состояние.)

Таким образом, применение стандартного комплекса реабилитационных мероприятий усиливает тенденцию к формированию внутреннего десинхроноза, особенно выраженную у лиц I типа, а сочетанная с АБУ ЧСС-реабилитация, напротив, купирует его развитие, что особенно выражено у лиц II типа.

Ритмическая структура организации функциональных систем, ее пластичность и устойчивость являются важнейшим механизмом приспособления организма к условиям среды. Саморегуляция функций и состояний в настоящее время связывается большинством исследователей с нейродинамическими процессами, которые сопровождаются пластическими перестройками в синаптическом аппарате и являются нейрофизиологической основой перестроек межцентральных отношений [5]. Эти процессы протекают во взаимосвязанных специфических и неспецифических системах, обеспечивающих функциональное единство различных уровней ЦНС. Важнейшим условием обеспечения системной организации целостного поведения являются межполушарное взаимодействие и взаимодействие коры с глубокими структурами мозга. В основе пластичности лежит индивидуальный характер функциональной организации внутри- и межсистемных отношений, которые находят свое отражение в нейродинамической структуре ЭЭГ.

Проведенные исследования показали, что тип нейродинамической структуры ЭЭГ, в основе которого лежит уровень организации интракортикального гомеостаза (корковый, корково-лимбический или лимбико-стволовой), определяет и уровень межполушарного взаимодействия. Вид организации ЭЭГ, связанный с процессами восприятия и хранения информации, связан с механизмами управления состоянием функций и систем.

Проведенные исследования отчетливо показали, что горнорабочие с начальными формами антракосиликоза характеризуются превосходством активационных процессов над тормозными, но глубина и направленность перестроек различны. У лиц I типа отмечается однонаправленная активация обоих полушарий с преимущественной активацией зон левого полушария, что свидетельствует о преимущественно индуктивной аналитической обработке информации. У лиц II типа процессы активации доминируют над процессами торможения, но этот эффект более выражен в правом полушарии, что свидетельствует о более выраженном компенсаторном предпатологическом и энергетическом напряжении. У лиц III типа процессы активации коры более выражены справа и более значительны, чем у лиц I и II типа.

Билатеральный индекс у лиц I, II и III типов равен соответственно +0,33; -0,7 и -0,8. Процессы компенсации у лиц II типа переходят в процессы интенсивного развития астенического состояния в однотипных производственных условиях.

В нейродинамической структуре ЭЭГ у лиц I типа усиление концентрации альфаядра говорит об активации координационных механизмов, обеспечивающих восприятие и сканирование поступающей в мозг информации и формирование на этой основе целенаправленных программ адаптивного поведения. Концентрация активности вокруг бетаядра в нейродинамической структуре ЭЭГ у

лиц II типа ведет к рассогласованию совместной перцептивной деятельности полушарий, усилению кортикальной возбудимости. Формирование функциональных ядер в области бета- и дельта-активности на фоне «размывания» альфа-ядра в ЭЭГ лиц III типа свидетельствует об усилении возбудимости, нарастании кортикального напряжения и усталости, нарушении самочувствия и росте беспокойства.

После сочетанной с АБУ ЧСС-реабилитации эффекты оптимизации интракортикального гомеостаза выражены больше, чем при изолированном применении стандартных мероприятий. Это может быть связано с частичной компенсацией нарушений в малом круге кровообращения. Легче поддается коррекции нейродинамическая структура ЭЭГ левого полушария, которое исходно находится в менее напряженном состоянии. Трудности реабилитации механизмов работы правого полушария могут быть связаны с перегрузкой регуляторных возможностей как функциональными, так и патологическими изменениями, а также участием в первичном досемантическом зрительно-пространственным анализе сенсорной информации.

Выводы

- 1. Индивидуально-типологические особенности регуляторных процессов в ЦНС при ранних проявлениях антропосилиноза отражаются в межполушарном взаимодействии, в структуре межкомпонентных взаимоотношений основных нейроритмов ЭЭГ. У горнорабочих с I типом организации ЭЭГ индекс билатерального равновесия равен +0,33. У лиц II и III типа выражены активационные и ослаблены тормозные влияния в коре больших полушарий, индекс билатерального равновесия равен соответственно -0,7 и -0,8.
- 2. У горнорабочих с AnSi-01 I типа в нейродинамической структуре ЭЭГ сохраняются устойчивые связи отдельных нейроритмов с альфа-ритмом (р α =0,67±0,04). У лиц II типа эти связи ослаблены на фоне усиления связей с бета-ритмом (р β =0,48±0,01). У лиц III типа на фоне деструктуризации альфаядра формируется бета-ядро (р α =0,26±0,01; р β =0,61±0,02).

- 3. Разработанный метод коррекции состояния в сочетании со стандартным набором реабилитационных мероприятий восстанавливает цикличность межполушарного взаимодействия, снижает неспецифическую активацию коры головного мозга на фоне восстановления специфической активации, также наблюдается тенденция к восстановлению чувства времени, особенно выраженная у лиц I и II типа.
- 1. А. с. №174200 МКИ А61 В5/00. Способ функциональной коррекции артериального давления / Л.Н. Гондарева // Биологические изобрет. и открытия. №25. 1992. №52. 13 с.
- 2. *Берч*, *H*. Обработка сигналов во временных интервалах / Н. Берч, Г. Чилдерс // Концепция информ. и биологические системы. М., 1966. С. 305–324.
- 3. *Гондарева*, *Л.Н*. Прогнозирование и коррекция состояния человека по биоритмологическим характеристикам физиологических процессов при различных видах деятельности : автореф. дис. ... д-ра биол. наук / Л.Н. Гондарева. СПб., 1996 36 с.
- 4. *Измеров, Н.Ф.* Актуальные проблемы медицины труда и промышленной экологии /

- Н.Ф. Измеров // Медицина труда и пром. экология. 1996. №1. С. 362–380.
- 5. *Медведев, В.И.* Устойчивость физиологических и психофизиологических функций человека при действии экстремальных факторов / В.И. Медведев. Л.: Наука, 1982.
- 6. Миндубаева, Ф.А. Состояние регуляторных механизмов в производственной адаптации горнорабочих шахт Караганды / Ф.А. Миндубаева // Вопр. физиологии, гигиены труда и профпатологии: сб. науч. тр Караганда, 1998. С. 118–123.
- 7. *Моисеева, Н.И.* Временная среда и биологические ритмы / Н.И. Моисеева, В.М. Сысуев. Л. : Наука, 1981. С. 127.
- 8. *Рушкевич*, *О.П*. Критерии диагностики пылевых профессиональных заболеваний рабочих угольной промышленности / О.П. Рушкевич, Р.В. Борисенкова // Медицина труда и пром. экология. 1996. N27. C. 24–29.
- 9. *Сороко*, *С.И*. Нейрофизиологические и психофизиологические основы адаптивного биоуправления / С.И. Сороко, В.В. Трубачев. СПб. : Политехника-сервис, 2010. 607 с.
- 10. Суворов, Н.Б. Особенности циклического взаимодействия структур мозга при различных состояниях и формах деятельности / Н.Б. Суворов, Н.Н. Василевский // Физиологический журн. СССР. 1981. Т. 6–7, №7. С. 456–461.

THE INDIVIDUAL AND TYPOLOGICAL APPROACH TO THE RELIEF OF DYSFUNCTIONS OF THE CENTRAL NERVOUS SYSTEM DURING THE DEVELOPING OF RISK OF THE DUSTBORNE PATHOLOGY

L.N. Gondareva

Ulyanovsk State University

The individual and typological features of the reactions of the EEG in case of initial forms of anthracosilicosis of the high-trained miners are defined. Biofeedback efficiency for correction of dysfunctions of the CNS is estimated.

Keywords: neurodynamic structure of the EEG, dustborne pathology, miners, biofeedback-training.