Download article

УДК 613.84+617.84]616-006

DOI 10.34014/2227-1848-2024-1-6-27

CARCINOGENIC EFFECT OF VARIOUS TYPES OF SMOKE

S.K. Pinaev1, O.G. Pinaeva1, A.Ya. Chizhov2,3,4

Far Eastern State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia;

RUDN University: Peoples' Friendship University of Russia, Moscow, Russia;

3 Medical ecological center "Mountain air XXI century", Moscow, Russia;

4 Federal Medical Biophysical Center named after A.I. Burnazyan, Moscow, Russia

 

All types of smoke are carcinogenic. Increasing air smoke is a serious global problem. Knowledge on carcinogenic effects of various types of smoke is necessary to work out effective preventive measures.

The purpose of the review is to characterize the general characteristics and peculiarities of the carcinogenic effects of various types of smoke. The most significant carcinogens of all types of smoke are polycyclic aromatic hydrocarbons, heavy metals and carbon microparticles. Any smoke is an etiological factor for respiratory tract cancer, and systemic neoplasms (tumors of hematopoietic and lymphoid tissues, central and peripheral nervous systems, soft tissues and skeleton). Tobacco smoke may be involved in the pathogenesis of cervical cancer due to the induction of local immunosuppression and specific tropic nitrosamines. Exhaust fumes due to high benzene content may cause hematological malignancies, especially leukemia in children. Wildfire smoke, due to significant amounts of ultra-fine carbon particles PM0.1, contributes to the development of central nervous system tumors. Severe contamination with natural and artificial radionuclides makes wildfire smoke a factor of high carcinogenic danger for the human population globally. Prevention of malignant neoplasms caused by smoke requires government measures to promote smoking cessation, hybrid and electric engines in automobiles, as well as wildfire prevention, early detection and extinction. Effective respirators and indoor air filters should be used for personal protection. To relieve environmentally caused oxidative stress, herbal medicines and food products that stimulate autophagy, as well as transfer factors for immunodeficiency correction, are recommended.

Key words: ecology, tobacco smoking, exhaust fumes, wildfire, carbon microparticles, polycyclic aromatic hydrocarbons, benzene, nitrosamines, radionuclides, neoplasms.

 

Conflict of interest. The authors declare no conflict of interest.

Author contributions

Research concept and design: Pinaev S.K., Chizhov A.Ya.

Literature search: Pinaev S.K., Pinaeva O.G.

Text writing and editing: Pinaev S.K., Chizhov A.Ya., Pinaeva O.G.

 

References

  1. Watts N., Amann M., Arnell N., Ayeb-Karlsson S., Beagley J., Belesova K., Boykoff M., Costello A. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. The Lancet. 2021; 397 (10269): 129–170. DOI: 10.1016/s0140-6736(20)32290-x.

  2. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Agents classified by the IARC Monographs. Vol. 1–133. Available at: https://monographs.iarc.fr/list-of-classifications (accessed: July 04, 2023).

  3. Deev R.V., Indeykin F.A. Metaplaziya: dinamika vzglyadov [Metaplasia: Transformation of views]. Geny i kletki. 2021; 16 (4): 55–67. DOI: 10.23868/202112004 (in Russian).

  4. Giroux V., Rustgi A.K. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer. 2017; 17 (10): 594–604. DOI: 10.1038/nrc.2017.68.

  5. Chizhov A.Ya., Pinaev S.K., Savin S.Z. Ekologicheski obuslovlennyy oksidativnyy stress kak faktor onkogeneza [Environmentally caused oxidative stress as a factor of oncogenesis]. Tekhnologii zhivykh sistem. 2012; 1: 47–53 (in Russian).

  6. Pinaev S.K., Chizhov A.Ya., Pinaeva O.G. Kriticheskie periody adaptatsii k dymu i solnechnoy aktivnosti na etapakh ontogeneza (obzor literatury) [Critical periods of adaptation to smoke and solar activity in human ontogenesis (literature review)]. Ekologiya cheloveka. 2021; 11: 4–11. DOI: 10.33396/1728-0869-2021-11-4-11 (in Russian).

  7. Pinaev S.K., Chizhov A.Ya., Pinaeva O.G. Svyaz' dyma i solnechnoy aktivnosti s novoobrazovaniyami cheloveka [The link of smoke and solar activity with human neoplasms]. Kazanskiy med. zhurnal. 2022; 103 (4): 650–657. DOI: 10.17816/KMJ2022-650 (in Russian).

  8. Kang D.S., Kim H.S., Jung J.H., Lee C.M., Ahn Y.S., Seo Y.R. Formaldehyde exposure and leukemia risk: a comprehensive review and network-based toxicogenomic approach. Genes. Environ. 2021; 43 (1): 13. DOI: 10.1186/s41021-021-00183-5.

  9. Kulkarni P.S., Crespo J.G., Afonso C.A. Dioxins sources and current remediation technologies – a review. Environ. Int. 2008; 34 (1): 139–153. DOI: 10.1016/j.envint.2007.07.009.

  10. Matés J.M., Segura J.A., Alonso F.J., Márquez J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic. Biol. Med. 2010; 49 (9): 1328–1341. DOI: 10.1016/j.freeradbiomed.2010.07.028.

  11. Andreeva T.I., Krasovskiy K.S. Tabak i zdorov'e [Tobacco and health]. Kiev; 2004. 224 (in Russian).

  12. Mayorova L.P., Sadykov A.I., Sych Yu.I. Otsenka vybrosov zagryaznyayushchikh veshchestv i emissii uglekislogo gaza pri lesnykh pozharakh (na primere Khabarovskogo kraya) [Assessment of pollutant and carbon dioxide emissions during wildfires (Khabarovsk Territory)]. Uchenye zametki TOGU. 2013; 4 (4): 9–13 (in Russian).

  13. Skugoreva S.G., Ashikhmina T.Ya., Fokina A.I., Lyalina E.I. Khimicheskie osnovy toksicheskogo deystviya tyazhelykh metallov (obzor) [Chemical basis of heavy metal toxicity (review)]. Teoreticheskaya i prikladnaya ekologiya. 2016; 1: 4–13 (in Russian).

  14. Asenjo S., Nuñez O., Segú-Tell J., Pardo Romaguera E., Cañete Nieto A., Martín-Méndez I., Bel-Lan A., García-Pérez J., Cárceles-Álvarez A., Ortega-García J.A., Ramis R. Cadmium (Cd) and Lead (Pb) topsoil levels and incidence of childhood leukemias. Environ. Geochem. Health. 2022; 8: 2341–2354. DOI: 10.1007/s10653-021-01030-w.

  15. Kramer A.L., Campbell L., Donatuto J., Heidt M., Kile M., Massey Simonich S.L. Impact of local and regional sources of PAHs on tribal reservation air quality in the U.S. Pacific Northwest. Sci. Total Environ. 2020; 710: 136412. DOI: 10.1016/j.scitotenv.2019.136412.

  16. WHO ambient air quality database, 2022 update: status report. Geneva; 2023. Available at: https://apps.who.int/iris/rest/bitstreams/1505790/retrieve (accessed: June 01, 2023).

  17. Yu P., Guo S., Xu R., Ye T., Li S., Sim M.R., Abramson M.J., Guo Y. Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. Innovation (Camb). 2021; 2 (3): 100143. DOI: 10.1016/j.xinn.2021.100143.

  18. Turner M.C., Krewski D., Diver W.R., Pope C.A. 3rd, Burnett R.T., Jerrett M., Marshall J.D., Gapstur S.M. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environ. Health Perspect. 2017; 125 (8): 087013. DOI: 10.1289/EHP1249.

  19. Weichenthal S., Olaniyan T., Christidis T., Lavigne E., Hatzopoulou M., Van Ryswyk K., Tjepkema M., Burnett R. Within-city Spatial Variations in Ambient Ultrafine Particle Concentrations and Incident Brain Tumors in Adults. Epidemiology. 2020; 31 (2): 177–183. DOI: 10.1097/EDE.0000000000001137.

  20. Berdnikova N.G., Zagurskaya A.V., Men'shov V.A., Trofimov A.V., Yablonskaya O.I., K"ncheva V.D., Balanski R.M. Assotsiirovannyy s tabachnym dymom kantserogenez i perspektivy ispol'zovaniya al'ternativnykh sistem dostavki nikotina v profilaktike onkologicheskikh zabolevaniy [Black smoke-associated carcinogenesis and the prospects for using alternative nicotine delivery systems in the prevention of cancer]. Prakticheskaya onkologiya. 2020; 21 (3): 230–248. DOI: 10.31917/2103230 (in Russian).

  21. Hecht S.S., Hatsukami D.K. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat. Rev. Cancer. 2022; 22 (3): 143–155. DOI: 10.1038/s41568-021-00423-4.

  22. Invernizzi G., Ruprecht A., Mazza R., Rossetti E., Sasco A., Nardini S., Boffi R. Particulate matter from tobacco versus diesel car exhaust: an educational perspective. Tob. Control. 2004; 13 (3): 219–221. DOI: 10.1136/tc.2003.005975.

  23. Jones I.A., St Helen G., Meyers M.J., Dempsey D.A., Havel C., Jacob P. 3rd, Northcross A., Hammond S.K., Benowitz N.L. Biomarkers of secondhand smoke exposure in automobiles. Tob. Control. 2014; 23 (1): 51–57. DOI: 10.1136/tobaccocontrol-2012-050724.

  24. Northcross A.L., Trinh M., Kim J., Jones I.A., Meyers M.J., Dempsey D.D., Benowitz N.L., Hammond S.K. Particulate mass and polycyclic aromatic hydrocarbons exposure from secondhand smoke in the back seat of a vehicle. Tob. Control. 2014; 23 (1): 14–20. DOI: 10.1136/tobaccocontrol-2012-050531.

  25. Okada K., Matsuo K. Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats. Biomedicines. 2023; 11 (3): 922. DOI: 10.3390/biomedicines11030922.

  26. Rothbard J.B., Kurnellas M.P., Ousman S.S., Brownell S., Rothbard J.J., Steinman L. Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harb. Perspect. Med. 2019; 9 (7): a034223. DOI: 10.1101/cshperspect.a034223.

  27. Siokos A.G., Siokou-Siova O., Tzafetas I. Correlation between cervical carcinogenesis and tobacco use by sexual partners. Hell. J. Nucl. Med. 2019; 22 (Suppl. 2): 184–190.

  28. Azary S., Ganguly A., Bunin G.R., Lombardi C., Park A.S., Ritz B., Heck J.E. Sporadic Retinoblastoma and Parental Smoking and Alcohol Consumption before and after Conception: A Report from the Children's Oncology Group. PLoS One. 2016; 11 (3): e0151728. DOI: 10.1371/journal.pone.0151728.

  29. Taborelli M., Montella M., Libra M., Tedeschi R., Crispo A., Grimaldi M., Dal Maso L., Serraino D., Polesel J. The dose-response relationship between tobacco smoking and the risk of lymphomas: a case-control study. BMC Cancer. 2017; 17 (1): 421. DOI: 10.1186/s12885-017-3414-2.

  30. Andreotti G., Katz M., Hoering A., Van Ness B., Crowley J., Morgan G., Hoover R.N., Baris D., Durie B. Risk of multiple myeloma in a case-spouse study. Leuk. Lymphoma. 2016; 57 (6): 1450–1459. DOI: 10.3109/10428194.2015.1094693.

  31. Sitdikova A.A., Svyatova N.V., Tsareva I.V. Analiz vliyaniya vybrosov avtotransporta v krupnom promyshlennom gorode na sostoyanie zagryazneniya atmosfernogo vozdukha [Analysis of the impact of vehicle emissions in a large industrial city on the state of open air pollution]. Sovremennye problemy nauki i obrazovaniya. 2015; 3: 591 (in Russian).

  32. Chernyshev V.V., Vasyanovich Yu.A., Zubtsova A.S., Golokhvast K.S. Issledovanie kachestvennogo sostava tverdykh chastits vykhlopov DVS avtomobiley bez probega [Study of the qualitative composition of particulate matter in the exhaust of internal combustion engines of cars without mileage]. Gornyy informatsionno-analiticheskiy byulleten'. 2014; S4-11: 160–167 (in Russian).

  33. McKenzie L.M., Allshouse W.B., Byers T.E., Bedrick E.J., Serdar B., Adgate J.L. Childhood hematologic cancer and residential proximity to oil and gas development. PLoS One. 2017; 12 (2): e0170423. DOI: 10.1371/journal.pone.0170423.

  34. Friesen M.C., Bassig B.A., Vermeulen R.R., Shu X.O., Purdue M.P., Stewart P.A., Xiang Y.B., Chow W.H., Ji B.T., Yang G., Linet M.S., Hu W., Gao Y.T., Zheng W., Rothman N., Lan Q. Evaluating Exposure-Response Associations for Non-Hodgkin Lymphoma with Varying Methods of Assigning Cumulative Benzene Exposure in the Shanghai Women's Health Study. Ann. Work. Expo. Health. 2017; 61 (1): 56–66. DOI: 10.1093/annweh/wxw009.

  35. Heck J.E., Park A.S., Qiu J., Cockburn M., Ritz B. Retinoblastoma and ambient exposure to air toxics in the perinatal period. J. Expo. Sci. Environ. Epidemiol. 2015; 25 (2): 182–186. DOI: 10.1038/jes.2013.84.

  36. Volk J., Heck J.E., Schmiegelow K., Hansen J. Parental occupational exposure to diesel engine exhaust in relation to childhood leukaemia and central nervous system cancers: a register-based nested case-control study in Denmark 1968–2016. Occup. Environ. Med. 2019; 76 (11): 809–817. DOI: 10.1136/oemed-2019-105847.

  37. Ramis R., Tamayo-Uria I., Gómez-Barroso D., López-Abente G., Morales-Piga A., Pardo Romaguera E., Aragonés N., García-Pérez J. Risk factors for central nervous system tumors in children: New findings from a case-control study. PLoS One. 2017; 12 (2): e0171881. DOI: 10.1371/journal.pone.0171881.

  38. Kehm R.D., Spector L.G., Poynter J.N., Vock D.M., Osypuk T.L. Socioeconomic Status and Childhood Cancer Incidence: A Population-Based Multilevel Analysis. Am. J. Epidemiol. 2018; 187 (5): 982–991. DOI: 10.1093/aje/kwx322.

  39. Montero-Montoya R., López-Vargas R., Arellano-Aguilar O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health. 2018; 84 (2): 225–238. DOI: 10.29024/aogh.910.

  40. Infante P.F. Residential Proximity to Gasoline Stations and Risk of Childhood Leukemia. Am. J. Epidemiol. 2017; 185 (1): 1–4. DOI: 10.1093/aje/kww130.

  41. Portal ONCOLOGY.RU. Zlokachestvennye novoobrazovaniya v Rossii [Malignant neoplasms in Russia]. Available at: http://www.oncology.ru/service/statistics/malignant_tumors/ (accessed: January 17, 2023) (in Russian).

  42. Federal'naya sluzhba gosudarstvennoy statistiki. Transport v Rossii 2003 [Federal State Statistics Service. Transport in Russia 2003]. Available at: https://rosstat.gov.ru/folder/210/document/13229 (accessed: May 12, 2022) (in Russian).

  43. Federal'naya sluzhba gosudarstvennoy statistiki. Kolichestvo sobstvennykh legkovykh avtomobiley na 1000 chelovek naseleniya (s 2000 g.) [Federal State Statistics Service. Number of personally owned passenger cars per 1000 population (since 2000)]. Available at: https://rosstat.gov.ru/storage/mediabank/obesp_legk_avto.xls (accessed: May 12, 2022) (in Russian).

  44. Shcherbov B.L., Lazareva E.V., Zhurkova I.S. Lesnye pozhary i ikh posledstviya [Wildfires and their consequences]. Novosibirsk: Akademicheskoe izdatel'stvo «GEO»; 2015. 211 (in Russian).

  45. Romanello M., McGushin A., Di Napoli C., Drummond P., Hughes N., Jamart L., Kennard H., Hamilton I. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The Lancet. 2021; 398 (10311): 1619–1662. DOI: 10.1016/S0140-6736(21)01787-6.

  46. Sherstyukov B.G. Lesnye pozhary [Wildfires]. In the book: Semenov S.M., nauch. red. Metody otsenki posledstviy izmeneniya klimata dlya fizicheskikh i biologicheskikh system [Methods for assessing the effects of climate change for physical and biological systems]. Moscow; 2012: 266–300 (in Russian).

  47. Stankevich T.S. Osobennosti otechestvennykh i zarubezhnykh podkhodov k otsenke pozharoopasnosti lesov [Characteristics of domestic and foreign approaches to assessing the wildfire hazard]. Baltiyskiy morskoy forum: materialy VII Mezhdunarodnogo Baltiyskogo morskogo foruma [Baltic Maritime Forum: Proceedings of the 7th International Baltic Maritime Forum]: v 6 t. T. 1. Kaliningrad; 2019: 170–178 (in Russian).

  48. Kondrat'ev A.S., Samsonova I.D. Prichiny vozniknoveniya i monitoring lesnykh pozharov v lesakh Novgorodskoy oblasti [Causes and monitoring of wildfires in the forests of the Novgorod region]. Aktual'nye problemy lesnogo kompleksa. 2020; 56: 36–39 (in Russian).

  49. Makhinova A.F. Dym lesnykh pozharov i ekologicheskaya bezopasnost' megapolisov: Mify i real'nost' [Wildfire smoke and environmental safety in megacities: Myths and reality]. Materialy 5-oy Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem «Ekologiya i bezopasnost' zhiznedeyatel'nosti goroda: Problemy i resheniya» [Proceedings of the 5th All-Russian science-to-practice conference with international participation “Ecology and city life safety: Problems and solutions”]. Khabarovsk: Izdatel'stvo DVGUPS; 2016: 191–194 (in Russian).

  50. Dickinson G.N., Miller D.D., Bajracharya A., Bruchard W., Durbin T.A., McGarry J.K.P., Moser E.P., Nuñez L.A., Pukkila E.J., Scott P.S., Sutton P.J., Johnston N.A.C. Health Risk Implications of Volatile Organic Compounds in Wildfire Smoke During the 2019 FIREX-AQ Campaign and Beyond. Geohealth. 2022; 6 (8): e2021GH000546. DOI: 10.1029/2021GH000546.

  51. Holder A.L., Ahmed A., Vukovich J.M., Rao V. Hazardous air pollutant emissions estimates from wildfires in the wildland urban interface. PNAS Nexus. 2023; 2 (6): pgad186. DOI: 10.1093/pnasnexus/pgad186.

  52. Xu R., Li S., Wu Y., Yue X., Wong E.M., Southey M.C., Hopper J.L., Abramson M.J., Li S., Guo Y. Wildfire-related PM2.5 and DNA methylation: An Australian twin and family study. Environ. Int. 2023; 171: 107704. DOI: 10.1016/j.envint.2022.107704.

  53. Navarro K.M., West M.R., O'Dell K., Sen P., Chen I.C., Fischer E.V., Hornbrook R.S., Apel E.C., Hills A.J., Jarnot A., DeMott P., Domitrovich J.W. Exposure to Particulate Matter and Estimation of Volatile Organic Compounds across Wildland Firefighter Job Tasks. Environ. Sci. Technol. 2021; 55 (17): 11795–11804. DOI: 10.1021/acs.est.1c00847.

  54. Martinsson J., Pédehontaa-Hiaa G., Malmborg V., Madsen D., Rääf. C. Experimental wildfire induced mobility of radiocesium in a boreal forest environment. Sci. Total. Environ. 2021; 792: 148310. DOI: 10.1016/j.scitotenv.2021.148310.

  55. Baker K.R., Lee S.D., Lemieux P., Hudson S., Murphy B.N., Bash J.O., Koplitz S.N., Nguyen T.K.V., Hao W.M., Baker S., Lincoln E. Predicting wildfire particulate matter and hypothetical re-emission of radiological Cs-137 contamination incidents. Sci Total Environ. 2021; 795: 148872. DOI: 10.1016/j.scitotenv.2021.148872.

  56. Martinsson J., Pédehontaa-Hiaa G., Madsen D., Rääf C. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat. Sci. Total. Environ. 2022; 815: 152725. DOI: 10.1016/j.scitotenv.2021.152725.

  57. Tobratov S.A., Zheleznova O.S. Prostranstvennye zakonomernosti differentsiatsii radionuklidov v landshaftakh Ryazanskoy oblasti i ikh indikatsionnoe znachenie [Spatial patterns of radionuclide differentiation in the Ryazan region and their indicator value]. Vestnik Ryazanskogo gosudarstvennogo universiteta im. S.A. Esenina. 2012; 4 (37): 153–175 (in Russian).

  58. Adetona A.M., Martin W.K., Warren S.H., Hanley N.M., Adetona O., Zhang J.J., Simpson C., Paulsen M., Rathbun S., Wang J.S., DeMarini D.M., Naeher L.P. Urinary mutagenicity and other biomarkers of occupational smoke exposure of wildland firefighters and oxidative stress. Inhal. Toxicol. 2019; 31 (2): 73–87. DOI: 10.1080/08958378.2019.1600079.

  59. Dobrykh V.A., Ryabtseva E.G., Gonokhova L.G., Gorbach A.A., Gnatyuk Yu.P., Tyuneeva M.D., Loseva Yu.A. Laboratornye proyavleniya porazheniya kletochnykh membran u lits, podvergshikhsya vozdeystviyu dyma lesnykh pozharov [Laboratory manifestations of cell membrane damage in individuals exposed to wildfire smoke]. Dal'nevostochnyy meditsinskiy zhurnal. 2002; 3: 26–28 (in Russian).

  60. Cascio W.E. Wildland fire smoke and human health. Sci. Total. Environ. 2018; 624: 586–595. DOI: 10.1016/j.scitotenv.2017.12.086.

  61. Vokina V.A., Novikov M.A., Alekseenko A.N., Sosedova L.M., Kapustina E.A., Bogomolova E.S., Elfimova T.A. Eksperimental'naya otsenka vliyaniya dyma lesnykh pozharov na reproduktivnuyu funktsiyu melkikh mlekopitayushchikh i ikh potomstvo [Experimental evaluation of effect of wildfire smoke exposure on reproductive function of small mammals and their offspring]. Izv. Irkut. gos. un-ta. Seriya: Biologiya. Ekologiya. 2019; 29: 88–98. DOI: 10.26516/2073-3372.2019.29.88 (in Russian).

  62. Kapustina E.A., Vokina V.A., Andreeva E.S. Povrezhdenie DNK v tkanyakh belykh krys pri vozdeystvii dyma lesnykh pozharov [DNA damage in the tissues of white rats exposed to wildfire smoke]. Zhurnal mediko-biologicheskikh issledovaniy. 2021; 9 (3): 335–342. DOI: 10.37482/2687-1491-Z071 (in Russian).

  63. Dobrykh V.A., Zakharycheva T.A. Dym lesnykh pozharov i zdorov'e [Wildfire smoke and health]. Khabarovsk; 2009. 201 (in Russian).

  64. Pinaev S.K., Pinaeva O.G., Chizhov A.Ya. About the role of environmental factors in carcinogenesis. Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020). E3S Web of Conferences. 2020; 169: 04003. DOI: 10.1051/e3sconf/202016904003.

  65. Navarro K.M., Kleinman M.T., Mackay C.E., Reinhardt T.E., Balmes J.R., Broyles G.A., Ottmar R.D., Naher L.P., Domitrovich J.W. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality. Environ. Res. 2019; 173: :462–468. DOI: 10.1016/j.envres.2019.03.060.

  66. Korsiak J., Pinault L., Christidis T., Burnett R.T., Abrahamowicz M., Weichenthal S. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. Lancet Planet. Health. 2022; 6 (5): e400–e409. DOI: 10.1016/S2542-5196(22)00067-5.

  67. Yu P., Xu R., Li S., Yue X., Chen G., Ye T., Coêlho M.S.Z.S., Saldiva P.H.N., Sim M.R., Abramson M.J., Guo Y. Exposure to wildfire-related PM2.5 and site-specific cancer mortality in Brazil from 2010 to 2016: A retrospective study. PLoS Med. 2022; 19 (9): e1004103. DOI: 10.1371/journal.pmed.1004103.

  68. Khan F., Jaoui M., Rudziński K., Kwapiszewska K., Martinez-Romero A., Gil-Casanova D., Lewandowski M., Kleindienst T.E., Offenberg J.H., Krug J.D., Surratt J.D., Szmigielski R. Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells. Environ. Pollut. 2022; 301: 119010. DOI: 10.1016/j.envpol.2022.119010.

  69. Bono R., Bellisario V., Tassinari R., Squillacioti G., Manetta T., Bugiani M., Migliore E., Piccioni P. Bisphenol A, Tobacco Smoke, and Age as Predictors of Oxidative Stress in Children and Adolescents. Int. J. Environ. Res. Public Health. 2019; 16 (11). DOI: 10.3390/ijerph16112025.

  70. Colombo G., Clerici M., Giustarini D., Portinaro N.M., Aldini G., Rossi R., Milzani A., Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. Mass. Spectrom. Rev. 2014; 33 (3): 183–218. DOI: 10.1002/mas.21392.

  71. Rabha R., Ghosh S., Padhy P.K. Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks. Ecotoxicol. Environ. Saf. 2018; 165: 393–403. DOI: 10.1016/j.ecoenv.2018.09.014.

  72. Samet J.M., Chen H., Pennington E.R., Bromberg P.A. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic. Biol. Med. 2020; 151: 26–37. DOI: 10.1016/j.freeradbiomed.2019.12.027.

  73. Proskurnina E.V., Vladimirov Yu.A. Svobodnye radikaly kak uchastniki regulyatornykh i patologicheskikh protsessov [Free radicals as participants in regulatory and pathological processes]. In the book: Grigor'ev A.I., Vladimirov Yu.A., ed. Fundamental'nye nauki – meditsine. Biofizicheskie meditsinskie tekhnologii [Basic sciences to medicine. Biophysical medical technologies]. Moscow: Maks Press; 2015: 38–71 (in Russian).

  74. Breda C.N.S., Davanzo G.G., Basso P.J., Saraiva Câmara N.O., Moraes-Vieira P.M.M. Mitochondria as central hub of the immune system. Redox Biol. 2019; 26: 101255. DOI: 10.1016/j.redox.2019.101255.

  75. Pinaev S.K. Rol' gema v ekologicheski obuslovlennom onkogeneze (obzor literatury) [The role of heme in environmentally determined oncogenesis (literature review)]. Ekologiya cheloveka. 2023; 30 (1): 5–15. DOI: 10.17816/humeco115234 (in Russian).

  76. Korolnek T., Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front. Pharmacol. 2014; 5: 126. DOI: 10.3389/fphar.2014.00126.

  77. Thévenod F. Iron and Its Role in Cancer Defense: A Double-Edged Sword. Met. Ions Life Sci. 2018; 18. DOI: 10.1515/9783110470734-021.

  78. Ivanov S.D. Zhelezo i rak: rol' ionov zheleza v protsesse kantserogeneza i pri luchevoy terapii opukholenositeley [Iron and cancer: Iron ions in carcinogenesis and radiation therapy of tumor carriers]. Uspekhi sovremennoy biologii. 2013; 133 (5): 481–494 (in Russian).

  79. Ying J.F., Lu Z.B., Fu L.Q., Tong Y., Wang Z., Li W.F., Mou X.Z. The role of iron homeostasis and iron-mediated ROS in cancer. Am. J. Cancer Res. 2021; 11 (5): 1895–1912.

  80. Straif K., Cohen A., Samet J., eds. Air pollution and cancer. IARC Scientific Publications. 2013; 161. Available at: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013 (accessed: May 30, 2022).

  81. Neven K.Y., Saenen N.D., Tarantini L., Janssen B.G., Lefebvre W., Vanpoucke C., Bollati V., Nawrot T.S. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study. Lancet Planet. Health. 2018; 2 (4): e174–e183. DOI: 10.1016/S2542-5196(18)30049-4.

  82. Rotroff D.M., Joubert B.R., Marvel S.W., Håberg S.E., Wu M.C., Nilsen R.M., Ueland P.M., Nystad W., London S.J., Motsinger-Reif A. Maternal smoking impacts key biological pathways in newborns through epigenetic modification in Utero. BMC Genomics. 2016; 17 (1): 976. DOI: 10.1186/s12864-016-3310-1.

  83. Morales-Rubio R.A., Alvarado-Cruz I., Manzano-León N., Andrade-Oliva M.D., Uribe-Ramirez M., Quintanilla-Vega B., Osornio-Vargas Á., De Vizcaya-Ruiz A. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part. Fibre. Toxicol. 2019; 16 (1): 7. DOI: 10.1186/s12989-019-0289-1.

  84. Yoon J., Terman J.R. MICAL redox enzymes and actin remodeling: New links to classical tumorigenic and cancer pathways. Mol. Cell. Oncol. 2017; 5 (1): e1384881. DOI: 10.1080/23723556.2017.1384881.

  85. Neufeld G., Mumblat Y., Smolkin T., Toledano S., Nir-Zvi I., Ziv K., Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist. Updat. 2016; 29: 1–12. DOI: 10.1016/j.drup.2016.08.001.

  86. Ito D., Nojima S., Nishide M., Okuno T., Takamatsu H., Kang S., Kimura T., Yoshida Y., Morimoto K., Maeda Y., Hosokawa T., Toyofuku T., Ohshima J., Kamimura D., Yamamoto M., Murakami M., Morii E., Rakugi H., Isaka Y., Kumanogoh A. mTOR Complex Signaling through the SEMA4A-Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells. J. Immunol. 2015; 195 (3): 934–943. DOI: 10.4049/jimmunol.1403038.

  87. Abuetabh Y., Tiwari S., Chiu B., Sergi C. Semaphorins Biology and Their Significance in Cancer. Austin. J. Clin. Pathol. 2014; 1 (2): 1009. Available at: https://austinpublishinggroup.com/clinical-pathology/fulltext/ajcp-v1-id1009.php (accessed: June 1, 2023).

  88. Neufeld G., Mumblat Y., Smolkin T., Toledano S., Nir-Zvi I., Ziv K., Kessler O. The role of the semaphorins in cancer. Cell. Adh. Migr. 2016; 10 (6): 652–674. DOI: 10.1080/19336918.2016.1197478.

  89. Ducoli L., Agrawal S., Sibler E., Kouno T., Tacconi C., Hon C.C., Berger S.D., Müllhaupt D., He Y., Kim J., D'Addio M., Dieterich L.C., Carninci P., de Hoon M.J.L., Shin J.W., Detmar M. LETR1 is a lymphatic endothelial-specific lncRNA governing cell proliferation and migration through KLF4 and SEMA3C. Nat. Commun. 2021; 12 (1): 925. DOI: 10.1038/s41467-021-21217-0.

  90. Mendes-da-Cruz D.A., Brignier A.C., Asnafi V., Baleydier F., Messias C.V., Lepelletier Y., Bedjaoui N., Renand A., Smaniotto S., Canioni D., Milpied P., Balabanian K., Bousso P., Leprêtre S., Bertrand Y., Dombret H., Ifrah N., Dardenne M., Macintyre E., Savino W., Hermine O. Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. PLoS One. 2014; 9 (7): e103405. DOI: 10.1371/journal.pone.0103405.

  91. Pfeifhofer-Obermair C., Tymoszuk P., Petzer V., Weiss G., Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front. Oncol. 2018; 8: 549. DOI: 10.3389/fonc.2018.00549.

  92. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer. 2018; 18 (8): 471–484. DOI: 10.1038/s41568-018-0015-6.

  93. Metayer C., Dahl G., Wiemels J., Miller M. Childhood Leukemia: A Preventable Disease. Pediatrics. 2016; 138 (Suppl. 1): S45–S55. DOI: 10.1542/peds.2015-4268H.

  94. Zenkov N.K., Chechushkov A.V., Kozhin P.M., Martinovich G.G., Kandalintseva N.V., Men'shchikova E.B. Autofagiya kak mekhanizm zashchity pri okislitel'nom stresse [Autophagy as a protective mechanism in oxidative stress]. Byulleten' sibirskoy meditsiny. 2019; 18 (2): 195–214. DOI: 10.20538/1682-0363-2019-2-195–214 (in Russian).

  95. Senger D.R., Li D., Jaminet S.C., Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS One. 2016; 11 (2): e0148042. DOI: 10.1371/journal.pone.0148042.

  96. Immunoreabilitatsiya pri infektsionno-vospalitel'nykh i somaticheskikh zabolevaniyakh s ispol'zovaniem Transfer Faktorov: metodicheskoe pis'mo [Immunorehabilitation for infectious-inflammatory and somatic diseases using Transfer Factors: Methodological letter]. Moscow: Ministerstvo zdravookhraneniya i sotsial'nogo razvitiya Rossiyskoy Federatsii; 2004. 34 (in Russian).

  97. Chizhov A.Y., Kirkutis A., Andruškienė J. Perspectives in the Application of Immunocorrector – transfer factor ™ in Immunoprophylaxis Programmes and Immunorehabilitation. Reabilitacijos Mokslai: Slauga, Kineziterapija, Ergoterapija. 2016; 2 (15): 5–17. DOI: 10.33607/rmske.v2i15.703.

Received July 27, 2023; accepted December 20, 2023.

Information about the authors

Pinaev Sergey Konstantinovich, Candidate of Sciences (Medicine), Associate Professor, Chair of Oncology with a Course in Surgery and Endoscopy, Far Eastern State Medical University, Ministry of Health of the Russian Federation. 680000, Russia, Khabarovsk, Muravyov-Amursky St., 35; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0003-0774-2376

Pinaeva Ol'ga Gennad'evna, Candidate of Sciences (Medicine), Associate Professor, Chair of Normal and Pathological Physiology, Far Eastern State Medical University, Ministry of Health of the Russian Federation. 680000, Russia, Khabarovsk, Muravyov-Amursky St., 35; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0001-9676-845X

Chizhov Aleksey Yaroslavovich, Honored Scientist of the Russian Federation, Academician of the Russian Ecological Academy, Doctor of Sciences (Medicine), Consulting Professor, Department of Human Ecology and Bioelementology, RUDN University: Peoples' Friendship University of Russia. 117198, Russia, Moscow, Miklukho-Maklay St., 6; General Director, Medical Ecological Center “Mountain Air XXI Century”. 115093, Russia, Moscow, Podolskoe highway, 8/5; Professor, Chair of Radiation Medicine, Federal Medical Biophysical Center named after A.I. Burnazyan. 123098, Russia, Moscow, Marshala Novikov St., 23; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/00000-0003-0542-1552

For citation

Pinaev S.K., Pinaeva O.G., Chizhov A.Ya. Osobennosti kantserogennogo deystviya razlichnykh vidov dyma [Carcinogenic effect of various types of smoke]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2024; 1: 6–27. DOI: 10.34014/2227-1848-2024-1-6-27 (in Russian).

 

Скачать статью

УДК 613.84+617.84]616-006

DOI 10.34014/2227-1848-2024-1-6-27

ОСОБЕННОСТИ КАНЦЕРОГЕННОГО ДЕЙСТВИЯ РАЗЛИЧНЫХ ВИДОВ ДЫМА

С.К. Пинаев1, О.Г. Пинаева1, А.Я. Чижов2,3,4

ФГБОУ ВО «Дальневосточный государственный медицинский университет» Минздрава России, г. Хабаровск, Россия;

ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», г. Москва, Россия;

Медико-экологический центр «Горный воздух XXI век», г. Москва, Россия;

ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна», г. Москва, Россия

 

Все виды дыма обладают канцерогенными свойствами. Нарастающее задымление воздушной среды является серьезной мировой проблемой. Знание особенностей канцерогенного действия различных форм дыма необходимо для разработки эффективных мер профилактики.

Цель обзора – охарактеризовать общие черты и особенности канцерогенного действия различных видов дыма.

Наиболее значимыми канцерогенами всех форм дыма являются полициклические ароматические углеводороды, тяжелые металлы и микрочастицы углерода. Дым любой природы является этиологическим фактором рака дыхательных путей, а также системных новообразований (опухолей кроветворной и лимфоидной тканей, центральной и периферической нервных систем, мягких тканей и скелета). Табачный дым может быть причастен к патогенезу рака шейки матки вследствие индукции локальной иммуносупрессии и наличия тропных специфических нитрозаминов. Выхлопные газы в связи с высоким содержанием бензола могут являться одной из причин возникновения гемобластозов, особенно лейкоза у детей. Дым лесных пожаров в связи с присутствием значительного количества сверхмалых частиц углерода PM0,1 способствует возникновению опухолей центральной нервной системы. Выраженное загрязнение природными и искусственными радионуклидами делает дым лесных пожаров фактором высокой канцерогенной опасности для человеческой популяции в глобальном масштабе. Профилактика вызванных дымом злокачественных новообразований требует государственных мер по пропаганде отказа от курения, переводу транспортных средств на гибридные и электрические двигатели, предупреждению, раннему выявлению и тушению лесных пожаров. В качестве персональной защиты следует использовать эффективные респираторы и воздушные фильтры для помещений. Для купирования экологически обусловленного окислительного стресса рекомендуются фитопрепараты и пищевые продукты, стимулирующие аутофагию, а также трансфер факторы для коррекции иммунодефицита.

Ключевые слова: экология, курение табака, выхлопные газы, лесные пожары, микрочастицы углерода, полициклические ароматические углеводороды, бензол, нитрозамины, радионуклиды, новообразования.

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов

Концепция и дизайн исследования: Пинаев С.К., Чижов А.Я.

Литературный поиск: Пинаев С.К., Пинаева О.Г.

Написание и редактирование текста: Пинаев С.К., Чижов А.Я., Пинаева О.Г.

 

Литература

  1. Watts N., Amann M., Arnell N., Ayeb-Karlsson S., Beagley J., Belesova K., Boykoff M., Costello A. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. The Lancet. 2021; 397 (10269): 129–170. DOI: 10.1016/s0140-6736(20)32290-x.

  2. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Agents classified by the IARC Monographs. Vol. 1–133. URL: https://monographs.iarc.fr/list-of-classifications (дата обращения: 04.07.2023).

  3. Деев Р.В., Индейкин Ф.А. Метаплазия: динамика взглядов. Гены и клетки. 2021; 16 (4): 55–67. DOI: 10.23868/202112004.

  4. Giroux V., Rustgi A.K. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer. 2017; 17 (10): 594–604. DOI: 10.1038/nrc.2017.68.

  5. Чижов А.Я., Пинаев С.К., Савин С.З. Экологически обусловленный оксидативный стресс как фактор онкогенеза. Технологии живых систем. 2012; 1: 47–53.

  6. Пинаев С.К., Чижов А.Я., Пинаева О.Г. Критические периоды адаптации к дыму и солнечной активности на этапах онтогенеза (обзор литературы). Экология человека. 2021; 11: 4–11. DOI: 10.33396/1728-0869-2021-11-4-11.

  7. Пинаев С.К., Чижов А.Я., Пинаева О.Г. Связь дыма и солнечной активности с новообразованиями человека. Казанский мед. журнал. 2022; 103 (4): 650–657. DOI: 10.17816/KMJ2022-650.

  8. Kang D.S., Kim H.S., Jung J.H., Lee C.M., Ahn Y.S., Seo Y.R. Formaldehyde exposure and leukemia risk: a comprehensive review and network-based toxicogenomic approach. Genes. Environ. 2021; 43 (1): 13. DOI: 10.1186/s41021-021-00183-5.

  9. Kulkarni P.S., Crespo J.G., Afonso C.A. Dioxins sources and current remediation technologies – a review. Environ. Int. 2008; 34 (1): 139–153. DOI: 10.1016/j.envint.2007.07.009.

  10. Matés J.M., Segura J.A., Alonso F.J., Márquez J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic. Biol. Med. 2010; 49 (9): 1328–1341. DOI: 10.1016/j.freeradbiomed.2010.07.028.

  11. Андреева Т.И., Красовский К.С. Табак и здоровье. Киев; 2004. 224.

  12. Майорова Л.П., Садыков А.И., Сыч Ю.И. Оценка выбросов загрязняющих веществ и эмиссии углекислого газа при лесных пожарах (на примере Хабаровского края). Ученые заметки ТОГУ. 2013; 4 (4): 9–13.

  13. Скугорева С.Г., Ашихмина Т.Я., Фокина А.И., Лялина Е.И. Химические основы токсического действия тяжёлых металлов (обзор). Теоретическая и прикладная экология. 2016; 1: 4–13.

  14. Asenjo S., Nuñez O., Segú-Tell J., Pardo Romaguera E., Cañete Nieto A., Martín-Méndez I., Bel-Lan A., García-Pérez J., Cárceles-Álvarez A., Ortega-García J.A., Ramis R. Cadmium (Cd) and Lead (Pb) topsoil levels and incidence of childhood leukemias. Environ. Geochem. Health. 2022; 8: 2341–2354. DOI: 10.1007/s10653-021-01030-w.

  15. Kramer A.L., Campbell L., Donatuto J., Heidt M., Kile M., Massey Simonich S.L. Impact of local and regional sources of PAHs on tribal reservation air quality in the U.S. Pacific Northwest. Sci. Total Environ. 2020; 710: 136412. DOI: 10.1016/j.scitotenv.2019.136412.

  16. WHO ambient air quality database, 2022 update: status report. Geneva; 2023. URL: https://apps.who.int/iris/

    rest/bitstreams/1505790/retrieve (дата обращения: 01.06.2023).

  17. Yu P., Guo S., Xu R., Ye T., Li S., Sim M.R., Abramson M.J., Guo Y. Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. Innovation (Camb). 2021; 2 (3): 100143. DOI: 10.1016/j.xinn.2021.100143.

  18. Turner M.C., Krewski D., Diver W.R., Pope C.A. 3rd, Burnett R.T., Jerrett M., Marshall J.D., Gapstur S.M. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environ. Health Perspect. 2017; 125 (8): 087013. DOI: 10.1289/EHP1249.

  19. Weichenthal S., Olaniyan T., Christidis T., Lavigne E., Hatzopoulou M., Van Ryswyk K., Tjepkema M., Burnett R. Within-city Spatial Variations in Ambient Ultrafine Particle Concentrations and Incident Brain Tumors in Adults. Epidemiology. 2020; 31 (2): 177–183. DOI: 10.1097/EDE.0000000000001137.

  20. Бердникова Н.Г., Загурская А.В., Меньшов В.А., Трофимов А.В., Яблонская О.И., Кънчева В.Д., Балански Р.М. Ассоциированный с табачным дымом канцерогенез и перспективы использования альтернативных систем доставки никотина в профилактике онкологических заболеваний. Практическая онкология. 2020; 21 (3): 230–248. DOI: 10.31917/2103230.

  21. Hecht S.S., Hatsukami D.K. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat. Rev. Cancer. 2022; 22 (3): 143–155. DOI: 10.1038/s41568-021-00423-4.

  22. Invernizzi G., Ruprecht A., Mazza R., Rossetti E., Sasco A., Nardini S., Boffi R. Particulate matter from tobacco versus diesel car exhaust: an educational perspective. Tob. Control. 2004; 13 (3): 219–221. DOI: 10.1136/tc.2003.005975.

  23. Jones I.A., St Helen G., Meyers M.J., Dempsey D.A., Havel C., Jacob P. 3rd, Northcross A., Hammond S.K., Benowitz N.L. Biomarkers of secondhand smoke exposure in automobiles. Tob. Control. 2014; 23 (1): 51–57. DOI: 10.1136/tobaccocontrol-2012-050724.

  24. Northcross A.L., Trinh M., Kim J., Jones I.A., Meyers M.J., Dempsey D.D., Benowitz N.L., Hammond S.K. Particulate mass and polycyclic aromatic hydrocarbons exposure from secondhand smoke in the back seat of a vehicle. Tob. Control. 2014; 23 (1): 14–20. DOI: 10.1136/tobaccocontrol-2012-050531.

  25. Okada K., Matsuo K. Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats. Biomedicines. 2023; 11 (3): 922. DOI: 10.3390/biomedicines11030922.

  26. Rothbard J.B., Kurnellas M.P., Ousman S.S., Brownell S., Rothbard J.J., Steinman L. Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harb. Perspect. Med. 2019; 9 (7): a034223. DOI: 10.1101/cshperspect.a034223.

  27. Siokos A.G., Siokou-Siova O., Tzafetas I. Correlation between cervical carcinogenesis and tobacco use by sexual partners. Hell. J. Nucl. Med. 2019; 22 (Suppl. 2): 184–190.

  28. Azary S., Ganguly A., Bunin G.R., Lombardi C., Park A.S., Ritz B., Heck J.E. Sporadic Retinoblastoma and Parental Smoking and Alcohol Consumption before and after Conception: A Report from the Children's Oncology Group. PLoS One. 2016; 11 (3): e0151728. DOI: 10.1371/journal.pone.0151728.

  29. Taborelli M., Montella M., Libra M., Tedeschi R., Crispo A., Grimaldi M., Dal Maso L., Serraino D., Polesel J. The dose-response relationship between tobacco smoking and the risk of lymphomas: a case-control study. BMC Cancer. 2017; 17 (1): 421. DOI: 10.1186/s12885-017-3414-2.

  30. Andreotti G., Katz M., Hoering A., Van Ness B., Crowley J., Morgan G., Hoover R.N., Baris D., Durie B. Risk of multiple myeloma in a case-spouse study. Leuk. Lymphoma. 2016; 57 (6): 1450–1459. DOI: 10.3109/10428194.2015.1094693.

  31. Ситдикова А.А., Святова Н.В., Царева И.В. Анализ влияния выбросов автотранспорта в крупном промышленном городе на состояние загрязнения атмосферного воздуха. Современные проблемы науки и образования. 2015; 3: 591.

  32. Чернышев В.В., Васянович Ю.А., Зубцова А.С., Голохваст К.С. Исследование качественного состава твердых частиц выхлопов ДВС автомобилей без пробега. Горный информационно-аналитический бюллетень. 2014; S4-11: 160–167.

  33. McKenzie L.M., Allshouse W.B., Byers T.E., Bedrick E.J., Serdar B., Adgate J.L. Childhood hematologic cancer and residential proximity to oil and gas development. PLoS One. 2017; 12 (2): e0170423. DOI: 10.1371/journal.pone.0170423.

  34. Friesen M.C., Bassig B.A., Vermeulen R.R, Shu X.O., Purdue M.P., Stewart P.A., Xiang Y.B., Chow W.H., Ji B.T., Yang G., Linet M.S., Hu W., Gao Y.T., Zheng W., Rothman N., Lan Q. Evaluating Exposure-Response Associations for Non-Hodgkin Lymphoma with Varying Methods of Assigning Cumulative Benzene Exposure in the Shanghai Women's Health Study. Ann. Work. Expo. Health. 2017; 61 (1): 56–66. DOI: 10.1093/annweh/wxw009.

  35. Heck J.E., Park A.S., Qiu J., Cockburn M., Ritz B. Retinoblastoma and ambient exposure to air toxics in the perinatal period. J. Expo. Sci. Environ. Epidemiol. 2015; 25 (2): 182–186. DOI: 10.1038/jes.2013.84.

  36. Volk J., Heck J.E., Schmiegelow K., Hansen J. Parental occupational exposure to diesel engine exhaust in relation to childhood leukaemia and central nervous system cancers: a register-based nested case-control study in Denmark 1968–2016. Occup. Environ. Med. 2019; 76 (11): 809–817. DOI: 10.1136/oemed-2019-105847.

  37. Ramis R., Tamayo-Uria I., Gómez-Barroso D., López-Abente G., Morales-Piga A., Pardo Romaguera E., Aragonés N., García-Pérez J. Risk factors for central nervous system tumors in children: New findings from a case-control study. PLoS One. 2017; 12 (2): e0171881. DOI: 10.1371/journal.pone.0171881.

  38. Kehm R.D., Spector L.G., Poynter J.N., Vock D.M., Osypuk T.L. Socioeconomic Status and Childhood Cancer Incidence: A Population-Based Multilevel Analysis. Am. J. Epidemiol. 2018; 187 (5): 982–991. DOI: 10.1093/aje/kwx322.

  39. Montero-Montoya R., López-Vargas R., Arellano-Aguilar O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health. 2018; 84 (2): 225–238. DOI: 10.29024/aogh.910.

  40. Infante P.F. Residential Proximity to Gasoline Stations and Risk of Childhood Leukemia. Am. J. Epidemiol. 2017; 185 (1): 1–4. DOI: 10.1093/aje/kww130.

  41. Портал ONCOLOGY.RU. Злокачественные новообразования в России. URL: http://www.oncology.ru/service/statistics/malignant_tumors/ (дата обращения: 17.01.2023).

  42. Федеральная служба государственной статистики. Транспорт в России 2003. URL: https://rosstat.gov.ru/folder/210/document/13229 (дата обращения: 12.05.2022).

  43. Федеральная служба государственной статистики. Количество собственных легковых автомобилей на 1000 человек населения (с 2000 г.). URL: https://rosstat.gov.ru/storage/mediabank/obesp_legk_avto.xls (дата обращения: 12.05.2022).

  44. Щербов Б.Л., Лазарева Е.В., Журкова И.С. Лесные пожары и их последствия. Новосибирск: Академическое издательство «ГЕО»; 2015. 211.

  45. Romanello M., McGushin A., Di Napoli C., Drummond P., Hughes N., Jamart L., Kennard H., Hamilton I. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The Lancet. 2021; 398 (10311): 1619–1662. DOI: 10.1016/S0140-6736(21)01787-6.

  46. Шерстюков Б.Г. Лесные пожары. В кн.: Семенов С.М., науч. ред. Методы оценки последствий изменения климата для физических и биологических систем. М.; 2012: 266–300.

  47. Станкевич Т.С. Особенности отечественных и зарубежных подходов к оценке пожароопасности лесов. Балтийский морской форум: материалы VII Международного Балтийского морского форума: в 6 т. Т. 1. Калининград; 2019: 170–178.

  48. Кондратьев А.С., Самсонова И.Д. Причины возникновения и мониторинг лесных пожаров в лесах Новгородской области. Актуальные проблемы лесного комплекса. 2020; 56: 36–39.

  49. Махинова А.Ф. Дым лесных пожаров и экологическая безопасность мегаполисов: Мифы и реальность. Материалы 5-ой Всероссийской научно-практической конференции с международным участием «Экология и безопасность жизнедеятельности города: Проблемы и решения». Хабаровск: Издательство ДВГУПС; 2016: 191–194.

  50. Dickinson G.N., Miller D.D., Bajracharya A., Bruchard W., Durbin T.A., McGarry J.K.P., Moser E.P., Nuñez L.A., Pukkila E.J., Scott P.S., Sutton P.J., Johnston N.A.C. Health Risk Implications of Volatile Organic Compounds in Wildfire Smoke During the 2019 FIREX-AQ Campaign and Beyond. Geohealth. 2022; 6 (8): e2021GH000546. DOI: 10.1029/2021GH000546.

  51. Holder A.L., Ahmed A., Vukovich J.M., Rao V. Hazardous air pollutant emissions estimates from wildfires in the wildland urban interface. PNAS Nexus. 2023; 2 (6): pgad186. DOI: 10.1093/pnasnexus/pgad186.

  52. Xu R., Li S., Wu Y., Yue X., Wong E.M., Southey M.C., Hopper J.L., Abramson M.J., Li S., Guo Y. Wildfire-related PM2.5 and DNA methylation: An Australian twin and family study. Environ. Int. 2023; 171: 107704. DOI: 10.1016/j.envint.2022.107704.

  53. Navarro K.M., West M.R., O'Dell K., Sen P., Chen I.C., Fischer E.V., Hornbrook R.S., Apel E.C., Hills A.J., Jarnot A., DeMott P., Domitrovich J.W. Exposure to Particulate Matter and Estimation of Volatile Organic Compounds across Wildland Firefighter Job Tasks. Environ. Sci. Technol. 2021; 55 (17): 11795–11804. DOI: 10.1021/acs.est.1c00847.

  54. Martinsson J., Pédehontaa-Hiaa G., Malmborg V., Madsen D., Rääf C. Experimental wildfire induced mobility of radiocesium in a boreal forest environment. Sci. Total. Environ. 2021; 792: 148310. DOI: 10.1016/j.scitotenv.2021.148310.

  55. Baker K.R., Lee S.D., Lemieux P., Hudson S., Murphy B.N., Bash J.O., Koplitz S.N., Nguyen T.K.V., Hao W.M., Baker S., Lincoln E. Predicting wildfire particulate matter and hypothetical re-emission of radiological Cs-137 contamination incidents. Sci Total Environ. 2021; 795: 148872. DOI: 10.1016/j.scitotenv.2021.148872.

  56. Martinsson J., Pédehontaa-Hiaa G., Madsen D., Rääf C. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat. Sci. Total. Environ. 2022; 815: 152725. DOI: 10.1016/j.scitotenv.2021.152725.

  57. Тобратов С.А., Железнова О.С. Пространственные закономерности дифференциации радионуклидов в ландшафтах Рязанской области и их индикационное значение. Вестник Рязанского государственного университета им. С.А. Есенина. 2012; 4 (37): 153–175.

  58. Adetona A.M., Martin W.K., Warren S.H., Hanley N.M., Adetona O., Zhang J.J., Simpson C., Paulsen M., Rathbun S., Wang J.S., DeMarini D.M., Naeher L.P. Urinary mutagenicity and other biomarkers of occupational smoke exposure of wildland firefighters and oxidative stress. Inhal. Toxicol. 2019; 31 (2): 73–87. DOI: 10.1080/08958378.2019.1600079.

  59. Добрых В.А., Рябцева Е.Г., Гонохова Л.Г., Горбач А.А., Гнатюк Ю.П., Тюнеева М.Д., Лосева Ю.А. Лабораторные проявления поражения клеточных мембран у лиц, подвергшихся воздействию дыма лесных пожаров. Дальневосточный медицинский журнал. 2002; 3: 26–28.

  60. Cascio W.E. Wildland fire smoke and human health. Sci. Total. Environ. 2018; 624: 586–595. DOI: 10.1016/j.scitotenv.2017.12.086.

  61. Вокина В.А., Новиков М.А., Алексеенко А.Н., Соседова Л.М., Капустина Е.А., Богомолова Е.С., Елфимова Т.А. Экспериментальная оценка влияния дыма лесных пожаров на репродуктивную функцию мелких млекопитающих и их потомство. Изв. Иркут. гос. ун-та. Серия: Биология. Экология. 2019; 29: 88–98. DOI: 10.26516/2073-3372.2019.29.88.

  62. Капустина Е.А., Вокина В.А., Андреева Е.С. Повреждение ДНК в тканях белых крыс при воздействии дыма лесных пожаров. Журнал медико-биологических исследований. 2021; 9 (3): 335–342. DOI: 10.37482/2687-1491-Z071.

  63. Добрых В.А., Захарычева Т.А. Дым лесных пожаров и здоровье. Хабаровск; 2009. 201.

  64. Pinaev S.K., Pinaeva O.G., Chizhov A.Ya. About the role of environmental factors in carcinogenesis. Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020). E3S Web of Conferences. 2020; 169: 04003. DOI: 10.1051/e3sconf/202016904003.

  65. Navarro K.M., Kleinman M.T., Mackay C.E., Reinhardt T.E., Balmes J.R., Broyles G.A., Ottmar R.D., Naher L.P., Domitrovich J.W. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality. Environ. Res. 2019; 173: :462–468. DOI: 10.1016/j.envres.2019.03.060.

  66. Korsiak J., Pinault L., Christidis T., Burnett R.T., Abrahamowicz M., Weichenthal S. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. Lancet Planet. Health. 2022; 6 (5): e400–e409. DOI: 10.1016/S2542-5196(22)00067-5.

  67. Yu P., Xu R., Li S., Yue X., Chen G., Ye T., Coêlho M.S.Z.S., Saldiva P.H.N., Sim M.R., Abramson M.J., Guo Y. Exposure to wildfire-related PM2.5 and site-specific cancer mortality in Brazil from 2010 to 2016: A retrospective study. PLoS Med. 2022; 19 (9): e1004103. DOI: 10.1371/journal.pmed.1004103.

  68. Khan F., Jaoui M., Rudziński K., Kwapiszewska K., Martinez-Romero A., Gil-Casanova D., Lewandowski M., Kleindienst T.E., Offenberg J.H., Krug J.D., Surratt J.D., Szmigielski R. Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells. Environ. Pollut. 2022; 301: 119010. DOI: 10.1016/j.envpol.2022.119010.

  69. Bono R., Bellisario V., Tassinari R., Squillacioti G., Manetta T., Bugiani M., Migliore E., Piccioni P. Bisphenol A, Tobacco Smoke, and Age as Predictors of Oxidative Stress in Children and Adolescents. Int. J. Environ. Res. Public Health. 2019; 16 (11). DOI: 10.3390/ijerph16112025.

  70. Colombo G., Clerici M., Giustarini D., Portinaro N.M., Aldini G., Rossi R., Milzani A., Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. Mass. Spectrom. Rev. 2014; 33 (3): 183–218. DOI: 10.1002/mas.21392.

  71. Rabha R., Ghosh S., Padhy P.K. Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks. Ecotoxicol. Environ. Saf. 2018; 165: 393–403. DOI: 10.1016/j.ecoenv.2018.09.014.

  72. Samet J.M., Chen H., Pennington E.R., Bromberg P.A. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic. Biol. Med. 2020; 151: 26–37. DOI: 10.1016/j.freeradbiomed.2019.12.027.

  73. Проскурнина Е.В., Владимиров Ю.А. Свободные радикалы как участники регуляторных и патологических процессов. В кн.: Григорьев А.И., Владимиров Ю.А., ред. Фундаментальные науки – медицине. Биофизические медицинские технологии. М.: Maкс Пресс; 2015: 38–71.

  74. Breda C.N.S., Davanzo G.G., Basso P.J., Saraiva Câmara N.O., Moraes-Vieira P.M.M. Mitochondria as central hub of the immune system. Redox Biol. 2019; 26: 101255. DOI: 10.1016/j.redox.2019.101255.

  75. Пинаев С.К. Роль гема в экологически обусловленном онкогенезе (обзор литературы). Экология человека. 2023; 30 (1): 5–15. DOI: 10.17816/humeco115234.

  76. Korolnek T., Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front. Pharmacol. 2014; 5: 126. DOI: 10.3389/fphar.2014.00126.

  77. Thévenod F. Iron and Its Role in Cancer Defense: A Double-Edged Sword. Met. Ions Life Sci. 2018; 18. DOI: 10.1515/9783110470734-021.

  78. Иванов С.Д. Железо и рак: роль ионов железа в процессе канцерогенеза и при лучевой терапии опухоленосителей. Успехи современной биологии. 2013; 133 (5): 481–494.

  79. Ying J.F., Lu Z.B., Fu L.Q., Tong Y., Wang Z., Li W.F., Mou X.Z. The role of iron homeostasis and iron-mediated ROS in cancer. Am. J. Cancer Res. 2021; 11 (5): 1895–1912.

  80. Straif K., Cohen A., Samet J., eds. Air pollution and cancer. IARC Scientific Publications. 2013; 161. URL: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-AndCancer-2013 (дата обращения: 30.05.2022).

  81. Neven K.Y., Saenen N.D., Tarantini L., Janssen B.G., Lefebvre W., Vanpoucke C., Bollati V., Nawrot T.S. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study. Lancet Planet. Health. 2018; 2 (4): e174–e183. DOI: 10.1016/S2542-5196(18)30049-4.

  82. Rotroff D.M., Joubert B.R., Marvel S.W., Håberg S.E., Wu M.C., Nilsen R.M., Ueland P.M., Nystad W., London S.J., Motsinger-Reif A. Maternal smoking impacts key biological pathways in newborns through epigenetic modification in Utero. BMC Genomics. 2016; 17 (1): 976. DOI: 10.1186/s12864-016-3310-1.

  83. Morales-Rubio R.A., Alvarado-Cruz I., Manzano-León N., Andrade-Oliva M.D., Uribe-Ramirez M., Quintanilla-Vega B., Osornio-Vargas Á., De Vizcaya-Ruiz A. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part. Fibre. Toxicol. 2019; 16 (1): 7. DOI: 10.1186/s12989-019-0289-1.

  84. Yoon J., Terman J.R. MICAL redox enzymes and actin remodeling: New links to classical tumorigenic and cancer pathways. Mol. Cell. Oncol. 2017; 5 (1): e1384881. DOI: 10.1080/23723556.2017.1384881.

  85. Neufeld G., Mumblat Y., Smolkin T., Toledano S., Nir-Zvi I., Ziv K., Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist. Updat. 2016; 29: 1–12. DOI: 10.1016/j.drup.2016.08.001.

  86. Ito D., Nojima S., Nishide M., Okuno T., Takamatsu H., Kang S., Kimura T., Yoshida Y., Morimoto K., Maeda Y., Hosokawa T., Toyofuku T., Ohshima J., Kamimura D., Yamamoto M., Murakami M., Morii E., Rakugi H., Isaka Y., Kumanogoh A. mTOR Complex Signaling through the SEMA4A-Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells. J. Immunol. 2015; 195 (3): 934–943. DOI: 10.4049/jimmunol.1403038.

  87. Abuetabh Y., Tiwari S., Chiu B., Sergi C. Semaphorins Biology and Their Significance in Cancer. Austin. J. Clin. Pathol. 2014; 1 (2): 1009. URL: https://austinpublishinggroup.com/clinical-pathology/fulltext/ajcp-v1-id1009.php (дата обращения: 01.06.2023).

  88. Neufeld G., Mumblat Y., Smolkin T., Toledano S., Nir-Zvi I., Ziv K., Kessler O. The role of the semaphorins in cancer. Cell. Adh. Migr. 2016; 10 (6): 652–674. DOI: 10.1080/19336918.2016.1197478.

  89. Ducoli L., Agrawal S., Sibler E., Kouno T., Tacconi C., Hon C.C., Berger S.D., Müllhaupt D., He Y., Kim J., D'Addio M., Dieterich L.C., Carninci P., de Hoon M.J.L., Shin J.W., Detmar M. LETR1 is a lymphatic endothelial-specific lncRNA governing cell proliferation and migration through KLF4 and SEMA3C. Nat. Commun. 2021; 12 (1): 925. DOI: 10.1038/s41467-021-21217-0.

  90. Mendes-da-Cruz D.A., Brignier A.C., Asnafi V., Baleydier F., Messias C.V., Lepelletier Y., Bedjaoui N., Re-nand A., Smaniotto S., Canioni D., Milpied P., Balabanian K., Bousso P., Leprêtre S., Bertrand Y., Dombret H., Ifrah N., Dardenne M., Macintyre E., Savino W., Hermine O. Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. PLoS One. 2014; 9 (7): e103405. DOI: 10.1371/journal.pone.0103405.

  91. Pfeifhofer-Obermair C., Tymoszuk P., Petzer V., Weiss G., Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front. Oncol. 2018; 8: 549. DOI: 10.3389/fonc.2018.00549.

  92. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer. 2018; 18 (8): 471–484. DOI: 10.1038/s41568-018-0015-6.

  93. Metayer C., Dahl G., Wiemels J., Miller M. Childhood Leukemia: A Preventable Disease. Pediatrics. 2016; 138 (Suppl. 1): S45–S55. DOI: 10.1542/peds.2015-4268H.

  94. Зенков Н.К., Чечушков А.В., Кожин П.М., Мартинович Г.Г., Кандалинцева Н.В., Меньщикова Е.Б. Аутофагия как механизм защиты при окислительном стрессе. Бюллетень сибирской медицины. 2019; 18 (2): 195–214. DOI: 10.20538/1682-0363-2019-2-195–214.

  95. Senger D.R., Li D., Jaminet S.C., Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS One. 2016; 11 (2): e0148042. DOI: 10.1371/journal.pone.0148042.

  96. Иммунореабилитация при инфекционно-воспалительных и соматических заболеваниях с использованием Трансфер Факторов: методическое письмо. М.: Министерство здравоохранения и социального развития Российской Федерации; 2004. 34.

  97. Chizhov A.Y., Kirkutis A., Andruškienė J. Perspectives in the Application of Immunocorrector – transfer factor ™ in Immunoprophylaxis Programmes and Immunorehabilitation. Reabilitacijos Mokslai: Slauga, Kineziterapija, Ergoterapija. 2016; 2 (15): 5–17. DOI: 10.33607/rmske.v2i15.703.

Поступила в редакцию 27.07.2023; принята 20.12.2023.

 

Авторский коллектив

Пинаев Сергей Константинович – кандидат медицинских наук, доцент кафедры онкологии с курсом хирургии и эндоскопии ДПО, ФГБОУ ВО «Дальневосточный государственный медицинский университет» Минздрава России. 680000, Россия, г. Хабаровск, ул. Муравьева-Амурского, 35; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0003-0774-2376

Пинаева Ольга Геннадьевна – кандидат медицинских наук, доцент кафедры нормальной и патологической физиологии, ФГБОУ ВО «Дальневосточный государственный медицинский университет» Минздрава России. 680000, Россия, г. Хабаровск, ул. Муравьева-Амурского, 35; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0001-9676-845X

Чижов Алексей Ярославович – заслуженный деятель науки РФ, академик Российской экологической академии, доктор медицинских наук, профессор-консультант Департамента экологии человека и биоэлементологии, ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы». 117198, Россия, г. Москва, ул. Миклухо-Маклая, 6; генеральный директор, Медико-экологический центр «Горный воздух XXI век». 115093, Россия, г. Москва, Подольское шоссе, 8/5; профессор кафедры радиационной медицины, ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна». 123098, Россия, г. Москва, ул. Маршала Новикова, 23; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/00000-0003-0542-1552

Образец цитирования

Пинаев С.К., Пинаева О.Г., Чижов А.Я. Особенности канцерогенного действия различных видов дыма. Ульяновский медико-биологический журнал. 2024; 1: 6–27. DOI: 10.34014/2227-1848-2024-1-6-27.