Download article
DOI 10.34014/2227-1848-2025-3-60-85
MODERN CONCEPTS FOR ANTITUMOR VACCINE DESIGN
E.M. Frantsiyants, V.A. Bandovkina, I.V. Neskubina, A.P. Men'shenina, E.I. Surikova, T.I. Moiseenko
National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
Immunotherapeutic vaccines represent a promising strategy in oncology. Recently, significant progress has been made in understanding the mechanisms of interaction between the immune system and tumor cells and in developing strategies to overcome tumor immunosuppression.
The aim of the review is to systematize modern data on approaches to the development of antitumor vaccines, analyze their mode of action, advantages and limitations.
Materials and methods. The PubMed, Google Scholar and eLibrary.ru were used for literature review.
Results. The review considers various platforms for creating antitumor vaccines: dendritic and tumor cells, nucleic acids, oncolytic viruses and peptides. Nucleic acid vaccines (DNA/mRNA) can encode multiple epitopes, including neoantigens, and are easily adapted for personalized therapy. Viral and cellular platforms combine direct tumor lysis with immunostimulation. Research papers present modern methods on modifying tumor cells to enhance their immunogenicity, such as adjuvant therapy, genetic engineering, and antigen delivery platforms. The review highlights the prospects for using exosomes and mitochondria as carriers for delivering therapeutic molecules, as well as combined approaches that include the use of vaccines in combination with immune checkpoint inhibitors, cytokine-induced killer cells and radiation therapy, which helps to overcome tumor resistance to immunotherapy and enhance antitumor immunity. The problems associated with antitumor vaccines in elderly patients are discussed.
Conclusion. Modern antitumor vaccines show significant therapeutic potential, particularly in combination with other treatment modalities. Successful integration of vaccines into complex cancer therapy requires interdisciplinary collaboration and continued basic and clinical research. Further research should be aimed at optimizing combination therapy regimens, developing response biomarkers, and adapting vaccines for elderly patients.
Key words: antitumor vaccines, dendritic cells, neoantigens, oncolytic viruses, exosomes, combination therapy.
Conflict of interest. The authors declare no conflict of interest.
Author contributions
Academic advising, text draft: Frantsiyants E.M.
Text editing, literature search: Bandovkina V.A.
Data analysis and interpretation: Neskubina I.V.
Research concept, text revision: Men'shenina A.P., Surikova E.I., Moiseenko T.I.
References
-
Dhas N., Kudarha R., Kulkarni S., Soman S., Navti P.D., Kulkarni J., Roy A.A., Colaco V., Raychaudhuri R., Gupta A., Pardeshi C., Bari D., Tiwari R., Patel J., Moorkoth S., Mutalik S. Nanoengineered platform for microenvironment-activated immunotherapy in cancer treatment. Front Biosci (Landmark Ed). 2024; 29 (10): 349. DOI: 10.31083/j.fbl2910349.
-
Bozhenko V.K., Randzhit R., Riger A.N., Zapirov G.M., Kunda M.A., Parkhomenko R.A., Podol'skaya M.V., Kudinova E.A., Kaprin A.D. Protivoopukholevye vaktsiny [Antitumor vaccines. Literature review]. Literaturnyi obzor. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii. 2022; 22 (4): 99–126 (in Russian).
-
Saxena M., van der Burg S.H., Melief C.J.M., Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21 (6): 360–378. DOI: 10.1038/s41568-021-00346-0.
-
Yin W.M., Li Y.W., Gu Y.Q., Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin. 2020; 41 (7): 902–910. DOI: 10.1038/s41401-020-0417-3.
-
Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017; 168 (4): 707–723. DOI: 10.1016/j.cell.2017.01.017.
-
Tran T., Blanc C., Granier C., Saldmann A., Tanchot C., Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol. 2019; 41 (1): 69–85. DOI: 10.1007/s00281-018-0691-z.
-
Liu J., Fu M., Wang M., Wan D., Wei Y., Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022; 15 (1): 28. DOI: 10.1186/s13045-022-01247-x.
-
Zhou Y., Wei Y., Tian X., Wei X. Cancer vaccines: current status and future directions. J. Hematol. Oncol. 2025; 18 (1): 18. DOI: 10.1186/s13045-025-01670-w.
-
Poudel K., Vithiananthan T., Kim J.O., Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials. 2025; 314: 122856. DOI: 10.1016/j.biomaterials.2024.122856.
-
Devaraja K., Singh M., Sharan K., Aggarwal S. Coley's Toxin to First Approved Therapeutic Vaccine-A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines. 2024; 12 (12): 2746. DOI: 10.3390/biomedicines12122746.
-
Okamoto M., Kobayashi M., Yonemitsu Y., Koido S., Homma S. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther. 2016; 7 (1): 133–138. DOI: 10.4292/wjgpt.v7.i1.133.
-
Figlin R.A., Tannir N.M., Uzzo R.G., Tykodi S.S., Chen D.Y.T., Master V., Kapoor A., Vaena D., Lowrance W., Bratslavsky G., DeBenedette M., Gamble A., Plachco A., Norris M.S., Horvatinovich J., Tcherepanova I.Y., Nicolette C.A., Wood C.G. ADAPT study group. Results of the ADAPT Phase 3 Study of Rocapuldencel-T in Combination with Sunitinib as First-Line Therapy in Patients with Metastatic Renal Cell Carcinoma. Clin Cancer Res. 2020; 26 (10): 2327–2336. DOI: 10.1158/1078-0432.CCR-19-2427.
-
Laurell A., Lönnemark M., Brekkan E., Magnusson A., Tolf A., Wallgren A.C., Andersson B., Adamson L., Kiessling R., Karlsson-Parra A. Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. J. Immunother Cancer. 2017; 5: 52. DOI: 10.1186/s40425-017-0255-0.
-
Rizell M., Sternby Eilard M., Andersson M., Andersson B., Karlsson-Parra A., Suenaert P. Phase 1 Trial With the Cell-Based Immune Primer Ilixadencel, Alone, and Combined With Sorafenib, in Advanced Hepatocellular Carcinoma. Front Oncol. 2019; 9: 19. DOI: 10.3389/fonc.2019.00019.
-
Fröbom R., Berglund E., Berglund D., Nilsson I.L., Åhlén J., von Sivers K., Linder-Stragliotto C., Suenaert P., Karlsson-Parra A., Bränström R.. Phase I trial evaluating safety and efficacy of intratumorally administered inflammatory allogeneic dendritic cells (ilixadencel) in advanced gastrointestinal stromal tumors. Cancer Immunol Immunother. 2020; 69 (11): 2393–2401. DOI: 10.1007/s00262-020-02625-5.
-
Baldueva I.A., Novik A.V., Moiseenko V.M., Nekhaeva T.L., Danilova A.B., Danilov A.O., Protsenko S.A., Petrova T.Yu., Uleiskaya G.I., Shekina L.A., Semenova A.I., Mikhailichenko T.D., Teletaeva G.M., Zhabina A.S., Volkov N.V., Komarov Yu.I. Klinicheskoe issledovanie (II faza) vaktsiny na osnove autologichnykh dendritnykh kletok s immunologicheskim ad"yuvantom u bol'nykh s melanomoi kozhi [Clinical trial (phase 2) of a vaccine based on autologous dendritic cells with an immunological adjuvant in patients with skin melanoma]. Voprosy onkologii. 2012; 58 (2): 212–221 (in Russian).
-
Nekhaeva, T. L., Savchenko, P. A., Novik, A. V., Efremova, N. A., Baldueva, I. A. Otsenka prognosticheskogo znacheniya reaktsii GZT pri primenenii autologichnoi dendritno-kletochnoi vaktsiny u bol'nykh melanomoi i sarkomami myagkikh tkanei [Assessment of prognostic value of delayed-type hypersensitivity (DTH) reaction in the application of autologous dendritic cell vaccine in patients with melanoma and soft tissue sarcomas]. Voprosy onkologii. 2025; 70 (6): 1077–1085. DOI: 10.37469/0507-3758-2024-70-6-1077-1085 (in Russian).
-
Vreeland T.J., Clifton G.T., Hale D.F., Chick R.C., Hickerson A.T., Cindass J.L., Adams A.M., Bohan P.M.K., Andtbacka R.H.I., Berger A.C., Jakub J.W., Sussman J.J., Terando A.M., Wagner T., Peoples G.E., Faries M.B. A Phase IIb Randomized Controlled Trial of the TLPLDC Vaccine as Adjuvant Therapy After Surgical Resection of Stage III/IV Melanoma: A Primary Analysis. Ann Surg Oncol. 2021; 28 (11): 6126–6137. DOI: 10.1245/s10434-021-09709-1.
-
Carpenter E.L., Van Decar S., Adams A.M., O'Shea A.E., McCarthy P., Chick R.C., Clifton G.T., Vreeland T., Valdera FA., Tiwari A., Hale D., Kemp Bohan P., Hickerson A., Smolinsky T., Thomas K., Cindass J., Hyngstrom J., Berger A.C., Jakub J., Sussman J.J., Shaheen M.F., Yu X., Wagner T.E., Faries M., Peoples G.E. Prospective, randomized, double-blind phase 2B trial of the TLPO and TLPLDC vaccines to prevent recurrence of resected stage III/IV melanoma: a prespecified 36-month analysis. J Immunother Cancer. 2023; 11 (8): e006665. DOI: 10.1136/jitc-2023-006665.
-
Chen K.S., Reinshagen C., Van Schaik T.A., Rossignoli F., Borges P., Mendonca N.C., Abdi R., Simon B., Reardon D.A., Wakimoto H., Shah K. Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity. Sci Transl Med. 2023; 15 (677): eabo4778. DOI: 10.1126/scitranslmed.abo4778.
-
Meng J., Lv Y., Bao W., Meng Z., Wang S., Wu Y., Li S., Jiao Z., Tian Z., Ma G., Wei W. Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation. Nat. Commun. 2023; 14 (1): 4505. DOI: 10.1038/s41467-023-40207-y.
-
Aerts J.G.J.V., de Goeje P.L., Cornelissen R., Kaijen-Lambers M.E.H., Bezemer K., van der Leest C.H., Mahaweni N.M., Kunert A., Eskens F.A.L.M., Waasdorp C., Braakman E., van der Holt B., Vulto A.G., Hendriks R.W., Hegmans J.P.J.J., Hoogsteden H.C. Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human. Clin Cancer Res. 2018; 24 (4): 766–776. DOI: 10.1158/1078-0432.CCR-17-2522.
-
Garg H., Suri P., Gupta J.C., Talwar G.P., Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int. 2016; 16: 49. DOI: 10.1186/s12935-016-0326-1.
-
Hassan R., Thomas A., Alewine C., Le D.T., Jaffee E.M., Pastan I. Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J. Clin. Oncol. 2016; 34 (34): 4171–4179. DOI: 10.1200/JCO.2016.68.3672.
-
Naito K., Kamigaki T., Matsuda E., Ibe H., Okada S., Oguma E., Kinoshita Y., Takimoto R., Makita K, Immunohistochemical analysis of WT1 antigen expression in various solid tumor cells. Anticancer Res. 2016; 36 (7): 3715–3724.
-
Lau S.P., van Montfoort N., Kinderman P., Lukkes M., Klaase L., van Nimwegen M., van Gulijk M., Dumas J., Mustafa D.A.M., Lievense S.L.A., Groeneveldt C., Stadhouders R., Li Y., Stubbs A., Marijt K.A., Vroman H., van der Burg S.H., Aerts J., van Hall T., Dammeijer F., van Eijck C.H.J. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J. Immunother Cancer. 2020; 8 (2): e000772. DOI: 10.1136/jitc-2020-000772.
-
Lau S.P., Klaase L., Vink M., Dumas J., Bezemer K., van Krimpen A., van der Breggen R., Wismans L.V., Doukas M., de Koning W., Stubbs A.P., Mustafa D.A.M., Vroman H., Stadhouders R., Nunes J.B., Stingl C., de Miranda N.F.C.C., Luider T.M., van der Burg S.H., Aerts J.G., van Eijck C.H.J. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: A phase I study. Eur. J. Cancer. 2022; 169: 20–31. DOI: 10.1016/j.ejca.2022.03.015.
-
Chen L., Rao W., Chen Y., Xie J. In vitro induction of anti‑lung cancer immune response by the A549 lung cancer stem cell lysate‑sensitized dendritic cell vaccine. Oncol Lett. 2024; 28 (5): 550. DOI: 10.3892/ol.2024.14683.
-
Mathieu M., Martin-Jaular L., Lavieu G., Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell. Biol. 2019; 21: 9–17. DOI: 10.1038/s41556-018-0250-9.
-
Choi J.S., Cho W.L., Choi Y.J., Kim J.D., Park H.A., Kim S.Y., Park J.H., Jo D.G., Cho Y.W. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. Journal of extracellular vesicles. 2019; 8 (1): 1565885. DOI: 10.1080/20013078.2019.1565885.
-
Nassar W., El-Ansary M., Sabry D., Mostafa M.A., Fayad T., Kotb E., Temraz M., Saad A.N., Essa W., Adel H. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomaterials research. 2016; 20: 21. DOI: 10.1186/s40824-016-0068-0.
-
Besse B., Charrier M., Lapierre V., Dansin E., Lantz O., Planchard D., Le Chevalier T., Livartoski A., Barlesi F., Laplanche A., Ploix S., Vimond N., Peguillet I., Théry C., Lacroix L., Zoernig I., Dhodapkar K., Dhodapkar M., Viaud S., Soria J.C., Reiners K.S., Pogge von Strandmann E., Vély F., Rusakiewicz S., Eggermont A., Pitt J.M., Zitvogel L., Chaput N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016; 5: e1071008. DOI: 10.1080/2162402X.2015.1071008.
-
Sengupta V., Sengupta S., Lazo A., Woods P., Nolan A., Bremer N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem cells and development. 2020; 29: 747–754. DOI: 10.1089/scd.2020.0080.
-
Yang Z., Shi J., Xie J., Wang Y., Sun J., Liu T., Zhao Y., Zhao X., Wang X., Ma Y., Malkoc V., Chiang C., Deng W., Chen Y., Fu Y., Kwak K.J., Fan Y., Kang C., Yin C., Rhee J., Bertani P., Otero J., Lu W., Yun K., Lee A.S., Jiang W., Teng L., Kim B.Y.S., Lee L.J. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature biomedical engineering. 2020; 4: 69–83. DOI: 10.1038/s41551-019-0485-1.
-
Hadla M., Palazzolo S., Corona G., Caligiuri I., Canzonieri V., Toffoli G., Rizzolio F. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond). 2016; 11: 2431–2441. DOI: 10.2217/nnm-2016-0154.
-
Huang L., Rong Y., Tang X., Yi K., Qi P., Hou J., Liu W., He Y., Gao X., Yuan C., Wang F. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer. 2022; 21 (1): 45. DOI: 10.1186/s12943-022-01515-x.
-
Cui C., Chakraborty K., Tang X.A., Zhou G., Schoenfelt K.Q., Becker K.M., Hoffman A., Chang Y.F., Blank A., Reardon C.A., Kenny H.A., Vaisar T., Lengyel E., Greene G., Becker L. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 2021; 184: 3163–3177.e21. DOI: 10.1016/j.cell.2021.04.016.
-
Familtseva A., Jeremic N., Tyagi S.C. Exosomes: cell-created drug delivery systems. Mol .Cell Biochem. 2019; 459: 1–6. DOI: 10.1007/s11010-019-03545-4.
-
Yim N., Ryu S.W., Choi K., Lee K.R., Lee S., Choi H., Kim J., Shaker M.R., Sun W., Park J.H., Kim D., Heo W.D., Choi C. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 2016; 7: 12277. DOI: 10.1038/ncomms12277.
-
Markov O., Oshchepkova A., Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol. 2019; 10: 1152. DOI: 10.3389/fphar.2019.01152.
-
Liu H., Chen L., Peng Y., Yu S., Liu J., Wu L., Zhang L., Wu Q., Chang X., Yu X., Liu T. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget. 2018; 9: 2887–2894. DOI: 10.18632/oncotarget.20812.
-
Chulpanova D.S., Kitaeva K.V., James V., Rizvanov A.A., Solovyeva V.V. Therapeutic prospects of extracellular vesicles in cancer treatment. Front. Immunol. 2018; 9: 1534. DOI: 10.3389/fimmu.2018.01534.
-
Wu M., Luo Z., Cai Z., Mao Q., Li Z., Li H., Zhang C., Zhang Y., Zhong A., Wu L., Liu X. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol. Med. 2023; 15 (10): e16836. DOI: 10.15252/emmm.202216836.
-
Goleij P., Babamohamadi M., Rezaei A., Sanae P.M., Tabari M.A.K., Sadreddini S., Arefnezhad R., Motedayyen H. Types of RNA therapeutics. Prog Mol Biol Transl Sci. 2024; 203: 41–63. DOI: 10.1016/bs.pmbts.2023.12.022.
-
Zhu Y., Zhu L., Wang S., Jin H. RNA-based therapeutics: review and prospects. Cell Death Dis. 2022; 13 (7): 644. DOI: 10.1038/s41419-022-05075-2.
-
Chandra S., Wilson J.C., Good D., Wei M.Q. mRNA vaccines: a new era in vaccine development. Oncol Res. 2024; 32 (10): 1543–1564. DOI: 10.32604/or.2024.043987.
-
Gu Y., Duan J., Yang N., Yang Y., Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm. 2022; 3 (3): e167. DOI: 10.1002/mco2.167.
-
Ma R., Li Z., Chiocca E.A., Caligiuri M.A., Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer. 2023; 9 (2): 122–139. DOI: 10.1016/j.trecan.2022.10.003.
-
Li S., Lu M., Yuan M., Ye J., Zhang W., Xu L., Wu X., Hui B., Yang Y., Wei B., Guo C., Wei M., Dong J., Wu X., Gu Y. CXCL10-reinforced oncolytic adenovirus promotes tumor-infiltrating T cell chemotaxis to enhance anti-PD-1 therapy. Oncoimmunology. 2022; 11 (1): 2118210. DOI: 10.1080/2162402X.2022.2118210.
-
Soliman H., Hogue D., Han H., Mooney B., Costa R., Lee M.C., Niell B., Williams A., Chau A., Falcon S., Soyano A., Armaghani A., Khakpour N., Weinfurtner R.J., Hoover S., Kiluk J., Laronga C., Rosa M., Khong H., Czerniecki B.. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial. Nat Med. 2023; 29 (2): 450–457. DOI: 10.1038/s41591-023-02210-0.
-
Toulmonde M., Guegan J.P., Spalato-Ceruso M., Peyraud F., Kind M., Vanhersecke L., Le Loarer F., Perret R., Cantarel C., Bellera C., Bessede A., Italiano A. Reshaping the tumor microenvironment of cold soft-tissue sarcomas with oncolytic viral therapy: a phase 2 trial of intratumoral JX-594 combined with avelumab and low-dose cyclophosphamide. Mol. Cancer. 2024; 23 (1): 38. DOI: 10.1186/s12943-024-01946-8.
-
Chouljenko D.V., Ding J., Lee I.F., Murad Y.M., Bu X., Liu G., Delwar Z., Sun Y., Yu S., Samudio I., Zhao R., Jia W.W. Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines. 2020; 8 (11): 484. DOI: 10.3390/biomedicines8110484.
-
Shen Y., Shi G., Liang X., Jin X., Wang Y., Wei G., Chen Y., Huang X., Lu J., Xia H., Xiao M., Rahimian S., Zhao R., Li Y., Lin D., Fang T., Chen W., Ma T., Bai X., Liang T. 694 An open-label, dose-escalation phase I clinical trial to evaluate the safety, tolerability, pharmacokinetic profile, and preliminary efficacy of VG161 in patients with advanced primary liver cancer. J Immuno Ther Cancer. 2022; 10 (Suppl. 2): A725–A725. DOI: 10.1136/jitc-2022-SITC2022.0694.
-
Galli J.L., Borre M., Vogelsang N.J., Ng S., Agarwal N., Parker С.С., Pook D.W., Rathenborg P., Flaig T.W., Carles J., Saad F., Shore N.D., Chen L., Heery C.R., Gerritsen W.R., Priou F., Langkilde N.C., Novikov A., Kantoff P.W. Phase III study of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2019; 37 (13): 1051–1061. DOI: 10.1200/JCO.18.02031.
-
Lin M.J., Svensson-Arvelund J., Lubitz G.S., Marabelle A., Melero I., Brown B.D., Brody J.D. Cancer vaccines: the next frontier of immunotherapy. Nat Cancer. 2022; 3: 911–926. DOI: 10.1038/s43018-022-00418-6.
-
McArthur K., Whitehead L.W., Heddleston J.M., Li L., Padman B.S., Oorschot V., Geoghegan N.D., Chappaz S., Davidson S., San Chin H., Lane R.M., Dramicanin M., Saunders T.L., Sugiana C., Lessene R., Osellame L.D., Chew T.L., Dewson G., Lazarou M., Ramm G., Lessene G., Ryan M.T., Rogers K.L., van Delft M.F., Kile B.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018; 359 (6378): eaao6047. DOI: 10.1126/science.aao6047.
-
Luo J., Mo F., Zhang Z., Hong W., Lan T., Cheng Y., Fang C., Bi Z., Qin F., Yang J., Zhang Z., Li X., Que H., Wang J., Chen S., Wu Y., Yang L., Li J., Wang W., Chen C., Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol. Immunol. 2024; 21 (11): 1251–1265. DOI: 10.1038/s41423-024-01203-4.
-
Bol K.F., Schreibelt G., Gerritsen W.R., de Vries I.M.J., Figdor C.G. Dendritic cell-based immunotherapy: current status and future prospects. Cancer Clinical Trials: the official journal of the American Association for Cancer Research. 2016; 22: 1897–1906.
-
van Willigen W.W., Bloemendal M., Boers-Sonderen M.J., de Groot J.W.B., Koornstra R.H.T., van der Veldt A.A.M., Haanen J.B.A.G., Boudewijns S., Schreibelt G., Gerritsen W.R., de Vries I.J.M., Bol K.F. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. Oncoimmunology. 2020; 9 (1): 1738814. DOI: 10.1080/2162402X.2020.1738814.
-
Boudewijns S., Bloemendal M., de Haas N., Westdorp H., Bol K.F., Schreibelt G., Aarntzen E.H.J.G., Lesterhuis W.J., Gorris M.A.J., Croockewit A., van der Woude L.L., van Rossum M.M., Welzen M., de Goede A., Hato S.V., van der Graaf W.T.A., Punt C.J.A., Koornstra R.H.T., Gerritsen W.R., Figdor C.G., de Vries I.J.M. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother CII. 2020; 69 (3): 477–488. DOI: 10.1007/s00262-019-02466-x.
-
Yu J., Sun H., Cao W., Song Y., Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022; 11: 3. DOI: 10.1186/s40164-022-00257-2.
-
Ahluwalia M.S., Reardon D.A., Abad A.P., Curry W.T., Wong E.T., Figel S.A., Mechtler L.L., Peereboom D.M., Hutson A.D., Withers H.G., Liu S., Belal A.N., Qiu J., Mogensen K.M., Dharma S.S., Dhawan A., Birkemeier M.T., Casucci D.M., Ciesielski M.J., Fenstermaker R.A. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2023; 41 (7): 1453–1465. DOI: 10.1200/JCO.22.00996.
-
Cox M.C., Castiello L., Mattei M., Santodonato L., D’Agostino G., Muraro E., Martorelli D., Lapenta C., Di Napoli A., Di Landro F., Cangemi M., Pavan A., Castaldo P., Hohaus S., Donati S., Montefiore E., Berdini C., Carlei D., Monque D.M., Ruco L., Prosperi D., Tafuri A., Spadaro F., Sestili P., Spada M., Dolcetti R., Santini S.M., Rozera C., Aricò E., Capone I., Belardelli F. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin Cancer Res. 2019; 25 (17): 5231–5241. DOI: 10.1158/1078-0432.CCR-19-0709.
-
Maeng H.M., Moore B.N., Bagheri H., Steinberg S.M., Inglefield J., Dunham K., Wei W.Z., Morris J.C., Terabe M., England L.C., Roberson B., Rosing D., Sachdev V., Pack S.D., Miettinen M.M., Barr F.G., Weiner L.M., Panch S., Stroncek D.F., Wood L.V., Berzofsky J.A. Phase I clinical trial of an autologous dendritic cell vaccine against HER2 demonstrates safety and preliminary clinical efficacy. Frontiers in Oncology. 2021; 11: 789078. DOI: 10.3389/fonc.2021.789078.
-
Montégut L., López-Otín C., Kroemer G. Aging and cancer. Mol. Cancer. 2024; 23 (1): 106. DOI: 10.1186/s12943-024-02020-z.
-
Chougnet C.A., Thacker R.I., Shehata H.M., Hennies C.M., Lehn M.A., Lages C.S., Janssen E.M. Loss of Phagocytic and Antigen Cross-Presenting Capacity in Aging Dendritic Cells Is Associated with Mitochondrial Dysfunction. J. Immunol. 2015; 195 (6): 2624–2632. DOI: 10.4049/jimmunol.1501006.
-
Gardner J.K., Mamotte C.D.S., Jackaman C., Nelson D.J. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017; 38: 40–51. DOI: 10.1016/j.arr.2017.07.002.
-
Cao Y., Du X., Yu J., Wang Y., Jin X., Gu B., Yin Q. Seno-antigen-pulsed dendritic cell vaccine induce anti-aging immunity to improve adipose tissue senescence and metabolic abnormalities. Biomed Pharmacother. 2024; 179: 117433. DOI: 10.1016/j.biopha.2024.117433.
Received April 16, 2025; accepted May 30, 2025.
Information about the authors
Frantsiyants Elena Mikhailovna, Doctor of Sciences (Biology), Professor, Deputy Director General for Science, National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. 344037, Russia, Rostov-on-Don, 14-ya Liniya St., 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0003-3618-6890
Bandovkina Valeriya Akhtyamovna, Doctor of Sciences (Biology), Associate Professor, Leading Researcher, Laboratory for the Study of Malignant Tumor Pathogenesis, National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. 63, 14-ya Liniya St., Rostov-on-Don, Russia, 344037; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2302-8271
Neskubina Irina Valer'evna, Doctor of Sciences (Biology), Senior Researcher, Laboratory for the Study of Malignant Tumor Pathogenesis, National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. 63, 14-ya Liniya St., Rostov-on-Don, Russia, 344037; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-7395-3086
Men'shenina Anna Petrovna, Doctor of Sciences (Medicine), Associate Professor, Leading Researcher, Department of Reproductive System Tumors, National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. 344037, Russia, Rostov-on-Don, 14-ya Liniya St., 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0002-7968-5078
Surikova Ekaterina Igorevna, Candidate of Sciences (Biology), Senior Researcher, Laboratory for the Study of Malignant Tumor Pathogenesis, National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. 63, 14-ya Liniya St., Rostov-on-Don, Russia, 344037; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-4318-7587
Moiseenko Tat'yana Ivanovna, Doctor of Sciences (Medicine), Professor, Chief Researcher, Department of Reproductive System Tumors, National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. 344037, Russia, Rostov-on-Don, 14-ya Liniya St., 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-9683-2164
For citation
Frantsiyants E.M., Bandovkina V.A., Neskubina I.V., Men'shenina A.P., Surikova E.I., Moiseenko T.I. Sovremennye kontseptsii konstruirovaniya protivoopukholevykh vaktsin [Modern concepts for antitumor vaccine design]. Ul'yanovskii mediko-biologicheskii zhurnal. 2025; 3: 60–85. DOI: 10.34014/2227-1848-2025-3-60-85 (in Russian).
Скачать статью
УДК 615.375
DOI 10.34014/2227-1848-2025-3-60-85
СОВРЕМЕННЫЕ КОНЦЕПЦИИ КОНСТРУИРОВАНИЯ ПРОТИВООПУХОЛЕВЫХ ВАКЦИН
Е.М. Франциянц, В.А. Бандовкина, И.В. Нескубина, А.П. Меньшенина, Е.И. Сурикова, Т.И. Моисеенко
ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации, г. Ростов-на-Дону, Россия
Применение иммунотерапевтических вакцин представляет собой перспективное направление в онкологии. В последние годы достигнут значительный прогресс в понимании механизмов взаимодействия иммунной системы с опухолевыми клетками и разработке стратегий преодоления опухолевой иммуносупрессии.
Цель обзора – систематизировать современные данные о подходах к разработке противоопухолевых вакцин, проанализировать механизмы их действия, преимущества и ограничения.
Материалы и методы. Для написания литературного обзора были использованы базы данных PubMed, Google Scholar и eLibrary.ru.
Результаты. Рассматриваются различные платформы для создания противоопухолевых вакцин: дендритные и опухолевые клетки, нуклеиновые кислоты, онколитические вирусы и пептиды. Нуклеиновые вакцины (ДНК/мРНК) позволяют кодировать множественные эпитопы, включая неоантигены, и легко адаптируются для персонализированной терапии. Вирусные и клеточные платформы сочетают прямой лизис опухоли с иммуностимуляцией. Описаны современные методы модификации опухолевых клеток для повышения их иммуногенности, такие как использование адъювантов, генная инженерия, а также платформы доставки антигенов. Освещены перспективы использования экзосом и митохондрий в качестве носителей для доставки терапевтических молекул, а также комбинированные подходы, включающие применение вакцин в сочетании с ингибиторами контрольных точек иммунитета, цитокиноиндуцированными клетками-киллерами и лучевой терапией, что позволяет преодолеть резистентность опухолей к иммунотерапии и усилить противоопухолевый иммунитет. Обсуждаются проблемы, связанные с применением противоопухолевых вакцин у пожилых пациентов.
Выводы. Современные противоопухолевые вакцины демонстрируют значительный терапевтический потенциал, особенно в комбинации с другими методами лечения. Успешная интеграция вакцин в комплексную терапию рака требует междисциплинарного сотрудничества и продолжения фундаментальных и клинических исследований. Дальнейшие исследования должны быть направлены на оптимизацию комбинированных схем терапии, разработку биомаркеров ответа и адаптацию вакцин для пациентов пожилого возраста.
Ключевые слова: противоопухолевые вакцины, дендритные клетки, неоантигены, онколитические вирусы, экзосомы, комбинированная терапия.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Вклад авторов
Научное руководство, написание исходного текста: Франциянц Е.М.
Редактирование текста, литературный поиск: Бандовкина В.А.
Анализ и интерпретация данных: Нескубина И.В.
Концепция исследования, доработка текста: Меньшенина А.П.
Концепция исследования, доработка текста: Сурикова Е.И.
Концепция исследования, доработка текста: Моисеенко Т.И.
Литература
-
Dhas N., Kudarha R., Kulkarni S., Soman S., Navti P.D., Kulkarni J., Roy A.A., Colaco V., Raychaudhuri R., Gupta A., Pardeshi C., Bari D., Tiwari R., Patel J., Moorkoth S., Mutalik S. Nanoengineered platform for microenvironment-activated immunotherapy in cancer treatment. Front Biosci (Landmark Ed). 2024; 29 (10): 349. DOI: 10.31083/j.fbl2910349.
-
Боженко В.К., Ранджит Р., Ригер А.Н., Запиров Г.М., Кунда М.А., Пархоменко Р.А., Подольская М.В., Кудинова Е.А., Каприн А.Д. Противоопухолевые вакцины. Литературный обзор. Вестник Российского научного центра рентгенорадиологии. 2022; 22 (4): 99–126.
-
Saxena M., van der Burg S.H., Melief C.J.M., Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21 (6): 360–378. DOI: 10.1038/s41568-021-00346-0.
-
Yin W.M., Li Y.W., Gu Y.Q., Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin. 2020; 41 (7): 902–910. DOI: 10.1038/s41401-020-0417-3.
-
Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017; 168 (4): 707–723. DOI: 10.1016/j.cell.2017.01.017.
-
Tran T., Blanc C., Granier C., Saldmann A., Tanchot C., Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol. 2019; 41 (1): 69–85. DOI: 10.1007/s00281-018-0691-z.
-
Liu J., Fu M., Wang M., Wan D., Wei Y., Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022; 15 (1): 28. DOI: 10.1186/s13045-022-01247-x.
-
Zhou Y., Wei Y., Tian X., Wei X. Cancer vaccines: current status and future directions. J. Hematol. Oncol. 2025; 18 (1): 18. DOI: 10.1186/s13045-025-01670-w.
-
Poudel K., Vithiananthan T., Kim J.O., Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials. 2025; 314: 122856. DOI: 10.1016/j.biomaterials.2024.122856.
-
Devaraja K., Singh M., Sharan K., Aggarwal S. Coley's Toxin to First Approved Therapeutic Vaccine-A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines. 2024; 12 (12): 2746. DOI: 10.3390/biomedicines12122746.
-
Okamoto M., Kobayashi M., Yonemitsu Y., Koido S., Homma S. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther. 2016; 7 (1): 133–138. DOI: 10.4292/wjgpt.v7.i1.133.
-
Figlin R.A., Tannir N.M., Uzzo R.G., Tykodi S.S., Chen D.Y.T., Master V., Kapoor A., Vaena D., Lowrance W., Bratslavsky G., DeBenedette M., Gamble A., Plachco A., Norris M.S., Horvatinovich J., Tcherepanova I.Y., Nicolette C.A., Wood C.G. ADAPT study group. Results of the ADAPT Phase 3 Study of Rocapuldencel-T in Combination with Sunitinib as First-Line Therapy in Patients with Metastatic Renal Cell Carcinoma. Clin Cancer Res. 2020; 26 (10): 2327–2336. DOI: 10.1158/1078-0432.CCR-19-2427.
-
Laurell A., Lönnemark M., Brekkan E., Magnusson A., Tolf A., Wallgren A.C., Andersson B., Adamson L., Kiessling R., Karlsson-Parra A. Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. J. Immunother Cancer. 2017; 5: 52. DOI: 10.1186/s40425-017-0255-0.
-
Rizell M., Sternby Eilard M., Andersson M., Andersson B., Karlsson-Parra A., Suenaert P. Phase 1 Trial With the Cell-Based Immune Primer Ilixadencel, Alone, and Combined With Sorafenib, in Advanced Hepatocellular Carcinoma. Front Oncol. 2019; 9: 19. DOI: 10.3389/fonc.2019.00019.
-
Fröbom R., Berglund E., Berglund D., Nilsson I.L., Åhlén J., von Sivers K., Linder-Stragliotto C., Suenaert P., Karlsson-Parra A., Bränström R.. Phase I trial evaluating safety and efficacy of intratumorally administered inflammatory allogeneic dendritic cells (ilixadencel) in advanced gastrointestinal stromal tumors. Cancer Immunol Immunother. 2020; 69 (11): 2393–2401. DOI: 10.1007/s00262-020-02625-5.
-
Балдуева И.А., Новик А.В., Моисеенко В.М., Нехаева Т.Л., Данилова А.Б., Данилов А.О., Проценко С.А., Петрова Т.Ю., Улейская Г.И., Шекина Л.А., Семенова А.И., Михайличенко Т.Д., Телетаева Г.М., Жабина А.С., Волков Н.В., Комаров Ю.И. Клиническое исследование (II фаза) вакцины на основе аутологичных дендритных клеток с иммунологическим адъювантом у больных с меланомой кожи. Вопросы онкологии. 2012; 58 (2): 212–221.
-
Нехаева, Т. Л., Савченко, П. А., Новик, А. В., Ефремова, Н. А., Балдуева, И. А. Оценка прогностического значения реакции ГЗТ при применении аутологичной дендритно-клеточной вакцины у больных меланомой и саркомами мягких тканей. Вопросы онкологии. 2025; 70 (6): 1077–1085. DOI: 10.37469/0507-3758-2024-70-6-1077-1085.
-
Vreeland T.J., Clifton G.T., Hale D.F., Chick R.C., Hickerson A.T., Cindass J.L., Adams A.M., Bohan P.M.K., Andtbacka R.H.I., Berger A.C., Jakub J.W., Sussman J.J., Terando A.M., Wagner T., Peoples G.E., Faries M.B. A Phase IIb Randomized Controlled Trial of the TLPLDC Vaccine as Adjuvant Therapy After Surgical Resection of Stage III/IV Melanoma: A Primary Analysis. Ann Surg Oncol. 2021; 28 (11): 6126–6137. DOI: 10.1245/s10434-021-09709-1.
-
Carpenter E.L., Van Decar S., Adams A.M., O'Shea A.E., McCarthy P., Chick R.C., Clifton G.T., Vreeland T., Valdera FA., Tiwari A., Hale D., Kemp Bohan P., Hickerson A., Smolinsky T., Thomas K., Cindass J., Hyngstrom J., Berger A.C., Jakub J., Sussman J.J., Shaheen M.F., Yu X., Wagner T.E., Faries M., Peoples G.E. Prospective, randomized, double-blind phase 2B trial of the TLPO and TLPLDC vaccines to prevent recurrence of resected stage III/IV melanoma: a prespecified 36-month analysis. J Immunother Cancer. 2023; 11 (8): e006665. DOI: 10.1136/jitc-2023-006665.
-
Chen K.S., Reinshagen C., Van Schaik T.A., Rossignoli F., Borges P., Mendonca N.C., Abdi R., Simon B., Reardon D.A., Wakimoto H., Shah K. Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity. Sci Transl Med. 2023; 15 (677): eabo4778. DOI: 10.1126/scitranslmed.abo4778.
-
Meng J., Lv Y., Bao W., Meng Z., Wang S., Wu Y., Li S., Jiao Z., Tian Z., Ma G., Wei W. Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation. Nat. Commun. 2023; 14 (1): 4505. DOI: 10.1038/s41467-023-40207-y.
-
Aerts J.G.J.V., de Goeje P.L., Cornelissen R., Kaijen-Lambers M.E.H., Bezemer K., van der Leest C.H., Mahaweni N.M., Kunert A., Eskens F.A.L.M., Waasdorp C., Braakman E., van der Holt B., Vulto A.G., Hendriks R.W., Hegmans J.P.J.J., Hoogsteden H.C. Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human. Clin Cancer Res. 2018; 24 (4): 766–776. DOI: 10.1158/1078-0432.CCR-17-2522.
-
Garg H., Suri P., Gupta J.C., Talwar G.P., Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int. 2016; 16: 49. DOI: 10.1186/s12935-016-0326-1.
-
Hassan R., Thomas A., Alewine C., Le D.T., Jaffee E.M., Pastan I. Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J. Clin. Oncol. 2016; 34 (34): 4171–4179. DOI: 10.1200/JCO.2016.68.3672.
-
Naito K., Kamigaki T., Matsuda E., Ibe H., Okada S., Oguma E., Kinoshita Y., Takimoto R., Makita K, Immunohistochemical analysis of WT1 antigen expression in various solid tumor cells. Anticancer Res. 2016; 36 (7): 3715–3724.
-
Lau S.P., van Montfoort N., Kinderman P., Lukkes M., Klaase L., van Nimwegen M., van Gulijk M., Dumas J., Mustafa D.A.M., Lievense S.L.A., Groeneveldt C., Stadhouders R., Li Y., Stubbs A., Marijt K.A., Vroman H., van der Burg S.H., Aerts J., van Hall T., Dammeijer F., van Eijck C.H.J. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J. Immunother Cancer. 2020; 8 (2): e000772. DOI: 10.1136/jitc-2020-000772.
-
Lau S.P., Klaase L., Vink M., Dumas J., Bezemer K., van Krimpen A., van der Breggen R., Wismans L.V., Doukas M., de Koning W., Stubbs A.P., Mustafa D.A.M., Vroman H., Stadhouders R., Nunes J.B., Stingl C., de Miranda N.F.C.C., Luider T.M., van der Burg S.H., Aerts J.G., van Eijck C.H.J. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: A phase I study. Eur. J. Cancer. 2022; 169: 20–31. DOI: 10.1016/j.ejca.2022.03.015.
-
Chen L., Rao W., Chen Y., Xie J. In vitro induction of anti‑lung cancer immune response by the A549 lung cancer stem cell lysate‑sensitized dendritic cell vaccine. Oncol Lett. 2024; 28 (5): 550. DOI: 10.3892/ol.2024.14683.
-
Mathieu M., Martin-Jaular L., Lavieu G., Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell. Biol. 2019; 21: 9–17. DOI: 10.1038/s41556-018-0250-9.
-
Choi J.S., Cho W.L., Choi Y.J., Kim J.D., Park H.A., Kim S.Y., Park J.H., Jo D.G., Cho Y.W. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. Journal of extracellular vesicles. 2019; 8 (1): 1565885. DOI: 10.1080/20013078.2019.1565885.
-
Nassar W., El-Ansary M., Sabry D., Mostafa M.A., Fayad T., Kotb E., Temraz M., Saad A.N., Essa W., Adel H. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomaterials research. 2016; 20: 21. DOI: 10.1186/s40824-016-0068-0.
-
Besse B., Charrier M., Lapierre V., Dansin E., Lantz O., Planchard D., Le Chevalier T., Livartoski A., Barlesi F., Laplanche A., Ploix S., Vimond N., Peguillet I., Théry C., Lacroix L., Zoernig I., Dhodapkar K., Dhodapkar M., Viaud S., Soria J.C., Reiners K.S., Pogge von Strandmann E., Vély F., Rusakiewicz S., Eggermont A., Pitt J.M., Zitvogel L., Chaput N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016; 5: e1071008. DOI: 10.1080/
2162402X.2015.1071008.
-
Sengupta V., Sengupta S., Lazo A., Woods P., Nolan A., Bremer N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem cells and development. 2020; 29: 747–754. DOI: 10.1089/scd.2020.0080.
-
Yang Z., Shi J., Xie J., Wang Y., Sun J., Liu T., Zhao Y., Zhao X., Wang X., Ma Y., Malkoc V., Chiang C., Deng W., Chen Y., Fu Y., Kwak K.J., Fan Y., Kang C., Yin C., Rhee J., Bertani P., Otero J., Lu W., Yun K., Lee A.S., Jiang W., Teng L., Kim B.Y.S., Lee L.J. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature biomedical engineering. 2020; 4: 69–83. DOI: 10.1038/s41551-019-0485-1.
-
Hadla M., Palazzolo S., Corona G., Caligiuri I., Canzonieri V., Toffoli G., Rizzolio F. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond). 2016; 11: 2431–2441. DOI: 10.2217/nnm-2016-0154.
-
Huang L., Rong Y., Tang X., Yi K., Qi P., Hou J., Liu W., He Y., Gao X., Yuan C., Wang F. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer. 2022; 21 (1): 45. DOI: 10.1186/s12943-022-01515-x.
-
Cui C., Chakraborty K., Tang X.A., Zhou G., Schoenfelt K.Q., Becker K.M., Hoffman A., Chang Y.F., Blank A., Reardon C.A., Kenny H.A., Vaisar T., Lengyel E., Greene G., Becker L. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 2021; 184: 3163–3177.e21. DOI: 10.1016/j.cell.2021.04.016.
-
Familtseva A., Jeremic N., Tyagi S.C. Exosomes: cell-created drug delivery systems. Mol. Cell Biochem. 2019; 459: 1–6. DOI: 10.1007/s11010-019-03545-4.
-
Yim N., Ryu S.W., Choi K., Lee K.R., Lee S., Choi H., Kim J., Shaker M.R., Sun W., Park J.H., Kim D., Heo W.D., Choi C. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 2016; 7: 12277. DOI: 10.1038/ncomms12277.
-
Markov O., Oshchepkova A., Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol. 2019; 10: 1152. DOI: 10.3389/fphar.2019.01152.
-
Liu H., Chen L., Peng Y., Yu S., Liu J., Wu L., Zhang L., Wu Q., Chang X., Yu X., Liu T. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget. 2018; 9: 2887–2894. DOI: 10.18632/oncotarget.20812.
-
Chulpanova D. S., Kitaeva K.V., James V., Rizvanov A.A., Solovyeva V.V. Therapeutic prospects of extracellular vesicles in cancer treatment. Front. Immunol. 2018; 9: 1534. DOI: 10.3389/fimmu.2018.01534.
-
Wu M., Luo Z., Cai Z., Mao Q., Li Z., Li H., Zhang C., Zhang Y., Zhong A., Wu L., Liu X. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol. Med. 2023; 15 (10): e16836. DOI: 10.15252/emmm.202216836.
-
Goleij P., Babamohamadi M., Rezaei A., Sanae P.M., Tabari M.A.K., Sadreddini S., Arefnezhad R., Motedayyen H. Types of RNA therapeutics. Prog Mol Biol Transl Sci. 2024; 203: 41–63. DOI: 10.1016/bs.pmbts.2023.12.022.
-
Zhu Y., Zhu L., Wang S., Jin H. RNA-based therapeutics: review and prospects. Cell Death Dis. 2022; 13 (7): 644. DOI: 10.1038/s41419-022-05075-2.
-
Chandra S., Wilson J.C., Good D., Wei M.Q. mRNA vaccines: a new era in vaccine development. Oncol Res. 2024; 32 (10): 1543–1564. DOI: 10.32604/or.2024.043987.
-
Gu Y., Duan J., Yang N., Yang Y., Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm. 2022; 3 (3): e167. DOI: 10.1002/mco2.167.
-
Ma R., Li Z., Chiocca E.A., Caligiuri M.A., Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer. 2023; 9 (2): 122–139. DOI: 10.1016/j.trecan.2022.10.003.
-
Li S., Lu M., Yuan M., Ye J., Zhang W., Xu L., Wu X., Hui B., Yang Y., Wei B., Guo C., Wei M., Dong J., Wu X., Gu Y. CXCL10-reinforced oncolytic adenovirus promotes tumor-infiltrating T cell chemotaxis to enhance anti-PD-1 therapy. Oncoimmunology. 2022; 11 (1): 2118210. DOI: 10.1080/2162402X.2022.2118210.
-
Soliman H., Hogue D., Han H., Mooney B., Costa R., Lee M.C., Niell B., Williams A., Chau A., Falcon S., Soyano A., Armaghani A., Khakpour N., Weinfurtner R.J., Hoover S., Kiluk J., Laronga C., Rosa M., Khong H., Czerniecki B.. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial. Nat Med. 2023; 29 (2): 450–457. DOI: 10.1038/s41591-023-02210-0.
-
Toulmonde M., Guegan J.P., Spalato-Ceruso M., Peyraud F., Kind M., Vanhersecke L., Le Loarer F., Perret R., Cantarel C., Bellera C., Bessede A., Italiano A. Reshaping the tumor microenvironment of cold soft-tissue sarcomas with oncolytic viral therapy: a phase 2 trial of intratumoral JX-594 combined with avelumab and low-dose cyclophosphamide. Mol. Cancer. 2024; 23 (1): 38. DOI: 10.1186/s12943-024-01946-8.
-
Chouljenko D.V., Ding J., Lee I.F., Murad Y.M., Bu X., Liu G., Delwar Z., Sun Y., Yu S., Samudio I., Zhao R., Jia W.W. Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines. 2020; 8 (11): 484. DOI: 10.3390/biomedicines8110484.
-
Shen Y., Shi G., Liang X., Jin X., Wang Y., Wei G., Chen Y., Huang X., Lu J., Xia H., Xiao M., Rahimian S., Zhao R., Li Y., Lin D., Fang T., Chen W., Ma T., Bai X., Liang T. 694 An open-label, dose-escalation phase I clinical trial to evaluate the safety, tolerability, pharmacokinetic profile, and preliminary efficacy of VG161 in patients with advanced primary liver cancer. J Immuno Ther Cancer. 2022; 10 (Suppl. 2): A725–A725. DOI: 10.1136/jitc-2022-SITC2022.0694.
-
Galli J.L., Borre M., Vogelsang N.J., Ng S., Agarwal N., Parker С.С., Pook D.W., Rathenborg P., Flaig T.W., Carles J., Saad F., Shore N.D., Chen L., Heery C.R., Gerritsen W.R., Priou F., Langkilde N.C., Novikov A., Kantoff P.W. Phase III study of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2019; 37 (13): 1051–1061. DOI: 10.1200/JCO.18.02031.
-
Lin M.J., Svensson-Arvelund J., Lubitz G.S., Marabelle A., Melero I., Brown B.D., Brody J.D. Cancer vaccines: the next frontier of immunotherapy. Nat Cancer. 2022; 3: 911–926. DOI: 10.1038/s43018-022-00418-6.
-
McArthur K., Whitehead L.W., Heddleston J.M., Li L., Padman B.S., Oorschot V., Geoghegan N.D., Chappaz S., Davidson S., San Chin H., Lane R.M., Dramicanin M., Saunders T.L., Sugiana C., Lessene R., Osellame L.D., Chew T.L., Dewson G., Lazarou M., Ramm G., Lessene G., Ryan M.T., Rogers K.L., van Delft M.F., Kile B.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018; 359 (6378): eaao6047. DOI: 10.1126/science.aao6047.
-
Luo J., Mo F., Zhang Z., Hong W., Lan T., Cheng Y., Fang C., Bi Z., Qin F., Yang J., Zhang Z., Li X., Que H., Wang J., Chen S., Wu Y., Yang L., Li J., Wang W., Chen C., Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol. Immunol. 2024; 21 (11): 1251–1265. DOI: 10.1038/s41423-024-01203-4.
-
Bol K.F., Schreibelt G., Gerritsen W.R., de Vries I.M.J., Figdor C.G. Dendritic cell-based immunotherapy: current status and future prospects. Cancer Clinical Trials: the official journal of the American Association for Cancer Research. 2016; 22: 1897–1906.
-
van Willigen W.W., Bloemendal M., Boers-Sonderen M.J., de Groot J.W.B., Koornstra R.H.T., van der Veldt A.A.M., Haanen J.B.A.G., Boudewijns S., Schreibelt G., Gerritsen W.R., de Vries I.J.M., Bol K.F. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. Oncoimmunology. 2020; 9 (1): 1738814. DOI: 10.1080/2162402X.2020.1738814.
-
Boudewijns S., Bloemendal M., de Haas N., Westdorp H., Bol K.F., Schreibelt G., Aarntzen E.H.J.G., Lesterhuis W.J., Gorris M.A.J., Croockewit A., van der Woude L.L., van Rossum M.M., Welzen M., de Goede A., Hato S.V., van der Graaf W.T.A., Punt C.J.A., Koornstra R.H.T., Gerritsen W.R., Figdor C.G., de Vries I.J.M. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother CII. 2020; 69 (3): 477–488. DOI: 10.1007/s00262-019-02466-x.
-
Yu J., Sun H., Cao W., Song Y., Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022; 11: 3. DOI: 10.1186/s40164-022-00257-2.
-
Ahluwalia M.S., Reardon D.A., Abad A.P., Curry W.T., Wong E.T., Figel S.A., Mechtler L.L., Peereboom D.M., Hutson A.D., Withers H.G., Liu S., Belal A.N., Qiu J., Mogensen K.M., Dharma S.S., Dhawan A., Birkemeier M.T., Casucci D.M., Ciesielski M.J., Fenstermaker R.A. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2023; 41 (7): 1453–1465. DOI: 10.1200/JCO.22.00996.
-
Cox M.C., Castiello L., Mattei M., Santodonato L., D’Agostino G., Muraro E., Martorelli D., Lapenta C., Di Napoli A., Di Landro F., Cangemi M., Pavan A., Castaldo P., Hohaus S., Donati S., Montefiore E., Berdini C., Carlei D., Monque D.M., Ruco L., Prosperi D., Tafuri A., Spadaro F., Sestili P., Spada M., Dolcetti R., Santini S.M., Rozera C., Aricò E., Capone I., Belardelli F. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin Cancer Res. 2019; 25 (17): 5231–5241. DOI: 10.1158/1078-0432.CCR-19-0709.
-
Maeng H.M., Moore B.N., Bagheri H., Steinberg S.M., Inglefield J., Dunham K., Wei W.Z., Morris J.C., Terabe M., England L.C., Roberson B., Rosing D., Sachdev V., Pack S.D., Miettinen M.M., Barr F.G., Weiner L.M., Panch S., Stroncek D.F., Wood L.V., Berzofsky J.A. Phase I clinical trial of an autologous dendritic cell vaccine against HER2 demonstrates safety and preliminary clinical efficacy. Frontiers in Oncology. 2021; 11: 789078. DOI: 10.3389/fonc.2021.789078.
-
Montégut L., López-Otín C., Kroemer G. Aging and cancer. Mol. Cancer. 2024; 23 (1): 106. DOI: 10.1186/s12943-024-02020-z.
-
Chougnet C.A., Thacker R.I., Shehata H.M., Hennies C.M., Lehn M.A., Lages C.S., Janssen E.M. Loss of Phagocytic and Antigen Cross-Presenting Capacity in Aging Dendritic Cells Is Associated with Mitochondrial Dysfunction. J. Immunol. 2015; 195 (6): 2624–2632. DOI: 10.4049/jimmunol.1501006.
-
Gardner J.K., Mamotte C.D.S., Jackaman C., Nelson D.J. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017; 38: 40–51. DOI: 10.1016/j.arr.2017.07.002.
-
Cao Y., Du X., Yu J., Wang Y., Jin X., Gu B., Yin Q. Seno-antigen-pulsed dendritic cell vaccine induce anti-aging immunity to improve adipose tissue senescence and metabolic abnormalities. Biomed Pharmacother. 2024; 179: 117433. DOI: 10.1016/j.biopha.2024.117433.
Поступила в редакцию 16.04.2025; принята 30.05.2025.
Авторский коллектив
Франциянц Елена Михайловна – доктор биологических наук, профессор, заместитель генерального директора по науке, ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации. 344037, Россия, г. Ростов-на-Дону, ул. 14-я линия, 63; е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0003-3618-6890
Бандовкина Валерия Ахтямовна – доктор биологических наук, доцент, ведущий научный сотрудник лаборатории изучения патогенеза злокачественных опухолей, ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации. 344037, Россия, г. Ростов-на-Дону, ул. 14-я линия, 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2302-8271
Нескубина Ирина Валерьевна – доктор биологических наук, старший научный сотрудник лаборатории изучения патогенеза злокачественных опухолей, ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации. 344037, Россия, г. Ростов-на-Дону, ул. 14-я линия, 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/
0000-0002-7395-3086
Меньшенина Анна Петровна – доктор медицинских наук, доцент, ведущий научный сотрудник отделения опухолей репродуктивной системы, ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации. 344037, Россия, г. Ростов-на-Дону, ул. 14-я линия, 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0002-7968-5078
Сурикова Екатерина Игоревна – кандидат биологических наук, старший научный сотрудник лаборатории изучения патогенеза злокачественных опухолей, ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации. 344037, Россия, г. Ростов-на-Дону, ул. 14-я линия, 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/
0000-0002-4318-7587
Моисеенко Татьяна Ивановна – доктор медицинских наук, профессор, главный научный сотрудник отделения опухолей репродуктивной системы, ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации. 344037, Россия, г. Ростов-на-Дону, ул. 14-я линия, 63; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-9683-2164
Образец цитирования
Франциянц Е.М., Бандовкина В.А., Нескубина И.В., Меньшенина А.П., Сурикова Е.И., Моисеенко Т.И. Современные концепции конструирования противоопухолевых вакцин. Ульяновский медико-биологический журнал. 2025; 3: 60–85. DOI: 10.34014/2227-1848-2025-3-60-85.