Download article

DOI 10.34014/2227-1848-2023-3-30-48

ELECTROENCEPHALOGRAPHIC MARKERS OF CNS FUNCTIONAL STATE IN SPORT

N.V. Balioz1, E.E. Arkhipova2, N.V. Mozolevskaya2, S.G. Krivoshchekov1,2

1 Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia;

2Novosibirsk State University of Economics and Management, Novosibirsk, Russia

 

All over the world, sports professionals are interested in attracting new technologies to work-out sessions to increase sportsmanship. Literature reveals that EEG markers of cognitive function dynamics, sensorimotor integration, and psychological stability are important in assessing the functional state of athletes. In addition to a high level of physical fitness, elite athletes develop cognitive skills specific to a particular sport. Besides they demonstrate high sensorimotor integration, improved attention, perception and information processing and other characteristics ensuring high performance. The review systematically analyzes publications devoted to the correlation between physical activity and CNS functional state. It is established that indicators of EEG alpha rhythm power and frequency are significant neurophysiological markers of cognitive function state. These indicators contribute much to studying high- and low-intensity physical activity.

The authors analyzed such databases as Medline, Web of Science, Scopus, Pubmed, Cochrane, Embase, Google Scholar, and eLIBRARY.

Key words: physical activity, cognitive functions, sports results, electroencephalography, alpha rhythm.

 

The work was supported by the federal budget for fundamental scientific research (subject no. 122042600140-6).

 

Conflict of interest. The authors declare no conflict of interest.

Author contributions

Literature search, data processing: Balioz N.V., Arkhipova E.E., Mozolevskaya N.V.

Data analysis and interpretation: Balioz S.G., Arkhipova E.E., Mozolevskaya N.V.

Text writing and editing: Balioz S.G., Krivoshchekov S.G.

 

References

  1. Fister I., Fister D., Deb S., Mlakar U., Brest J. Post hoc analysis of sport performance with differential evolution. Neural Comput. Appl. 2018: 1–10. DOI: 10.1007/s00521-018-3395-3.

  2. Henriksen K., Storm L.K., Stambulova N., Pyrdol N., Larsen C.H. Successful and less successful interventions with youth and senior athletes: insights from expert sport psychology practitioners. J. Clin. Sport Psychol. 2019; 13 (1): 72–94. DOI: 10.1123/jcsp.2017-0005.

  3. Dalen T., Sandmae S., Stevens T.G., Hjelde G.H., Kjøsnes T.N., Wisløff U. Differences in acceleration and high-intensity activities between small-sided games and peak periods of official matches in elite soccer players. J. Strength Cond. Res. 2021; 35 (7): 2018–2024. DOI: 10.1519/JSC.0000000000003081.

  4. Yarrow K., Brown P., Krakauer J.W. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat. Rev. Neurosci. 2009; 10 (8): 585–596. DOI: 10.1038/nrn2672.

  5. Chang Y., Lee J.J., Seo J.H., Song H.J., Kim Y.T., Lee H.J. Neural correlates of motor imagery for elite archers. NMR Biomed. 2011; 24: 366–372. DOI: 10.1002/nbm.1600.

  6. Zhuina D.V., Maydokina L.G. Psikhologicheskie osobennosti sportsmenov-pobediteley [Psychological characteristics of athletes-winners]. Sovremennye problemy nauki i obrazovaniya. 2014; 6: 1519–1522. Available at: https://www.elibrary.ru/item.asp?id=22878836 (accessed: February 20, 2023) (in Russian).

  7. Vergunov E.G., Nikolaeva E.I., Balioz N.V., Krivoshchekov S.G. Lateral'nye predpochteniya kak vozmozhnye fenotipicheskie prediktory rezervov serdechno-sosudistoy sistemy i osobennosti sensomotornoy integratsii u al'pinistov [Lateral preferences as possible phenotypic predictors of the reserves of the cardiovascular system and features of sensorimotor integration in climbers]. Fiziologiya cheloveka. 2018; 44 (3): 97–108. DOI: 10.7868/S0131164618030116 (n Russian).

  8. Zhang L., Qiu F., Zhu H., Xiang M., Zhou L. Neural Efficiency and Acquired Motor Skills: An fMRI Study of Expert Athletes. Front Psychol. 2019; 6 (10): 27–38. DOI: 10.3389/fpsyg.2019.02752. PMID: 31866917. PMCID: PMC6908492.

  9. Cabeza R., Albert M., Belleville S., Craik F.I., Duarte A., Grady C.L. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 2018; 19: 701–710. DOI: 10.1038/s41583-018-0068-2.

  10. Dumoulin S.O., Fracasso A., Van der Zwaag W., Siero J.C., Petridou N. Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function. Neuroimage. 2018; 168: 345–357. DOI: 10.1016/j.neuroimage.2017.01.028.

  11. Fink A., Rominger C., Benedek M., Perchtold C.M., Papousek I., Weiss E.M. EEG alpha activity during imagining creative moves in soccer decision-making situations. Neuropsychologia. 2018; 114: 118–124. DOI: 10.1016/j.neuropsychologia.2018.04.025.

  12. Kabachkova A.V., Zakharova A.N., Krivoshchekov S.G., Kapilevich L.V. Dvigatel'naya aktivnost' i kognitivnaya deyatel'nost': osobennosti vzaimodeystviya i mekhanizmy vliyaniya [Physical and cognitive activity: Interaction and mechanisms of influence]. Fiziologiya cheloveka. 2022; 48 (5): 126–136. DOI: 10.31857/S0131164622700102 (in Russian).

  13. Costanzo M.E., VanMeter J.W., Janelle C.M., Braun A., Miller M.W., Oldham J. Neural efficiency in expert cognitive-motor performers during affective challenge. J. Mot. Behav. 2016; 48: 573–588. DOI: 10.1080/00222895.2016.1161591.

  14. Cheron G., Petit G., Cheron J., Leroy A., Cebolla A., Cevallos C. Brain oscillations in sport: toward EEG biomarkers of performance. Front. Psychol. 2016; 7: 246–271. DOI: 10.3389/fpsyg.2016.00246.

  15. Chaddock-Heyman L., Erickson K.I., Voss M.W., Knech A.M., Pontifex M.B., Castelli D.M. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Front. Hum. Neurosci. 2013; 7: 72. DOI: 10.3389/fnhum.201300072.

  16. Fontes E.B., Okano A.H., De Guio F., Schabort E.J., Min L.L., Basset F.A. Brain activity and perceived exertion during cycling exercise: an fMRI study. Br. J. Sport Med. 2015; 49: 556–560. DOI: 10.1136/bjsports-2012-091924.

  17. Boecker H., Drzezga A. A perspective on the future role of brain pet imaging in exercise science. Neuroimage. 2016; 131: 73–80. DOI: 10.1016/j.neuroimage.2015.10.021.

  18. Shih C.H., Moore K., Browner N., Sklerov M., Dayan E. Physical activity mediates the association between striatal dopamine transporter availability and cognition in Parkinson’s disease. Parkinsonism Relat. Disord. 2019; 62: 68–72. DOI: 10.1016/j.parkreldis.2019.01.027.

  19. Zhang L., Qiu F., Zhu H., Xiang M., Zhou L. Neural Efficiency and Acquired Motor Skills: An fMRI Study of Expert Athletes. Front Psychol. 2019; 6 (10): 27–38. DOI: 10.3389/fpsyg.2019.02752. PMID: 31866917. PMCID: PMC6908492.

  20. Huang P., Fang R., Li B.Y., Chen S.D. Exercise-related changes of networks in aging and mild cognitive impairment brain. Front. Aging Neurosci. 2016; 8: 47. DOI: 10.3389/fnagi.2016.00047.

  21. Pedersen B.K., Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015; 25 (3): 1–72. DOI: 10.1111/sms.12581.

  22. Cassilhas R.C., Tufik S., De Mello M.T. Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci. 2016; 73: 975–983. DOI: 10.1007/s00018-015-2102-0.

  23. Mellow M.L., Goldsworthy M.R., Coussens S., Smith A.E. Acute aerobic exercise and neuroplasticity of the motor cortex: a systematic review. J. Sci. Med. Sports. 2019; 23: 408–414. DOI: 10.1016/j.jsams.2019.10.015.

  24. Hicks S.D., Jacob P., Perez O., Baffuto M., Gagnon Z., Middleton F.A. The transcriptional signature of a runner’s high. Med. Sci. Sports Exerc. 2019; 51: 970–978. DOI: 10.1249/MSS.0000000000001865.

  25. Sparling P.B., Giuffrida A., Piomelli D., Rosskopf L., Dietrich A. Exercise activates the endocannabinoid system. Neuroreport. 2003; 14: 2209–2211. DOI: 10.1097/00001756-200312020-00015.

  26. Skosnik P.D., Hajos M., Cortes-Briones J.A., Edwards C.R., Pittman B.P., Hoffmann W.E. Cannabinoid receptor-mediated disruption of sensory gating and neural oscillations: a translational study in rats and humans. Neuropharmacology. 2018; 135: 412–423. DOI: 10.1016/j.neuropharm.2018.03.036.

  27. Verburgh L., Scherder E.J., Van Lange P.A., Oosterlaan J. Executive functioning in highly talented soccer players. PLoS One. 2014; 9 (3): e91254. DOI: 10.1371/journal.pone.0091254.

  28. Vestberg T., Reinebo G., Maurex L., Ingvar M., Petrovic P. Core executive functions are associated with success in young elite soccer players. PLoS One. 2017; 12: e0170845. DOI: 10.1371/journal.pone.0170845.

  29. Policastro F., Accardo A., Marcovich R., Pelamatti G., Zoia S. Relation between motor and cognitive skills in italian basketball players aged between 7 and 10 Years Old. Sports (Basel). 2018; 6 (3): 80. DOI: 10.3390/sports6030080.

  30. Qiu F., Pi Y., Liu K., Li X., Zhang J., Wu Y. Influence of sports expertise level on attention in multiple object tracking. Peer J. 2018; 6: e5732. DOI: https://doi.org/10.7717/peerj.5732. PMID: 30280051.

  31. Kudo K., Ito T., Tsutsui S., Yamamoto Y., Ishikura T. Compensatory coordination of release parameters in a throwing task. J. Mot. Behav. 2000; 32 (4): 337–345. DOI: 10.1080/00222890009601384.

  32. Kudo K., Ohtsuki T. Adaptive variability in skilled human movements. Inform. Media Technol. 2008; 3 (1): 409–420. DOI: 10.1527/tjsai.23.151.

  33. Davlet'yarova K.V., Nagornov M.S., Krivoshchekov S.G., Il'in A.A., Kapilevich L.V. Fiziologicheskie kharakteristiki dvigatel'nykh navykov udarnykh deystviy u futbolistov s ogranichennymi vozmozhnostyami zdorov'ya [Physiological characteristics of motor impact skills in soccer players with disabilities]. Fiziologiya cheloveka. 2022; 48 (2): 5–13. Available at: https://www.elibrary.ru/item.asp?id=48022777 (accessed: 20.02.2023). DOI: 10.31857/S0131164622010040 (in Russian).

  34. Fontani G., Maffei D., Cameli S., Polidori F. Reactivity and event-related potentials during attentional tests in athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1999; 80 (4): 308–317. DOI: 10.1007/s004210050597.

  35. Kudo K., Miyazaki M., Kimura T., Yamanaka K., Kadota H., Hirashima M., Nakajima Y., Nakazawa K., Ohtsuki T. Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: an fMRI study. NeuroImage. 2004; 22 (3): 1291–1301. DOI: 10.1016/j.neuroimage.2004.03.043.

  36. Laurienti P.J., Burdette J.H., Wallace M.T., Yen Y.F., Field A.S., Stein B.E. Deactivation of sensory-specific cortex by cross-modal stimuli. J. Cogn. Neurosci. 2002; 14 (3): 420–429. DOI: 10.1162/089892902317361930.

  37. Loprinzi P.D., Ponce P., Frith E. Hypothesized mechanisms through which acute exercise influences episodic memory. Physiology International. 2018; 105 (4): 285–297. DOI: 10.1556/2060.105.2018.4.28.

  38. Rossini P.M., Di Iorio R., Bentivoglio M., Bertini G., Ferreri F., Gerloff C. Methods for analysis of brain connectivity: an IFCN-sponsored review. Clin. Neurophysiol. 2019; 130: 1833–1858. DOI: 10.1016/j.clinph.2019.06.006.

  39. Gwin J.T., Gramann K., Makeig S., Ferris D.P. Removal of movement artifact from high-density EEG recorded during walking and running. J. Neurophysiol. 2010; 103: 3526–3534. DOI: 10.1152/jn.00105.2010.

  40. Crews D.J., Landers D.M. Electroencephalographic measures of attentionalpatterns prior to the golf putt. Med. Sci. Sports Exerc. 1993; 25 (1): 116–126. DOI: 10.1249/00005768-199301000-00016.

  41. Salazar W., Landers D.M., Petruzzello S.J., Han M.W., Crews D.J., Kubitz K.A. Hemispheric asymmetry, cardiac response, and performance in elite archers. Res. Q. Exerc. Sport. 1990; 61 (4): 351–359. DOI: 10.1080/02701367.1990.10607499.

  42. Nakata H., Yoshie M., Miura A., Kudo K. Characteristics of the athletes' brain: Evidence from neurophysiology and neuroimaging (Review). Japan Society for the Promotion of Science. 2010; 62: 197–211. DOI: 10.1016/j.brainresrev.2009.11.006.

  43. Wilson V.E., Dikman Z., Bird E.I., Williams J.M., Harmison R., Shaw-Thornton L., Schwartz G.E. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers (Review). Appl Psychophysiol Biofeedback. 2016: 41 (1): 121–127. DOI: 10.1007/s10484-015-9307-8.

  44. Lubar J.F., Shouse M.N. EEG and behavioral changes in a hyperkinetic childconcurrent with training of the sensorimotor rhythm (SMR): a preliminary report. Biofeedback Self-Regul. 1976; 1 (3): 293–306. DOI: 10.1007/BF01001170.

  45. Landers D.M., Petruzzello S.J., Salazar W., Crews, D.J. The influence of electro-cortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exerc. 1991; 23 (1): 123–129.

  46. Gordon E.M., Chauvin R.J., Van A.N. A somato-cognitive action network alternates with effector regions in motor cortex. Nature. 2023. DOI: 10.1038/s41586-023-05964-2. PMID: 37076628.

  47. Fumoto M., Oshima T., Kamiya K. Ventral prefrontal cortex and serotonergic system activation during pedaling exercise induces negative mood improvement and increased alpha band in EEG. Behavioural Brain Research. 2010; 213 (1): 1–9. DOI: 10.1016/j.bbr.2010.04.017.

  48. Basar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 2012; 86 (1): 1–24. DOI: 10.1016/j.ijpsycho.2012.07.002.

  49. Bazanova O.M., Vernon D. Interpreting EEG alpha activity. Neurosci. Biobe-hav. Rev. 2013; 44: 94–110. DOI: 10.1016/j.neubiorev.2013.05.007.

  50. Cooper N.R., Croft R.J., Dominey S.J., Burgess A.P., Gruzelier J.H. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 2003; 47 (1): 65–74. DOI: 10.1016/s0167-8760(02)00107-1.

  51. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: the inhibition timing hypothesis. Brain Res. Rev. 2007; 53 (1): 63–88. DOI: 10.1016/j.brainresrev.2006.06.003.

  52. Foxe J.J., Snyder A.C. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2011; 2: 154. DOI: 10.3389/fpsyg.2011.00154.

  53. Mathewson K.E., Lleras A., Beck D.M., Fabiani M., Ro T., Gratton G. Pulsed out of awareness: EEG alpha oscillations represent a pulsed inhibition of ongoing cortical processing. Front. Psychol. 2011; 2: 99. DOI: 10.3389/fpsyg.2011.00099.

  54. Jensen O., Bonnefond M., VanRullen R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn. Sci. 2012; 16: 200–206.

  55. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 1999; 29 (2): 169–195.

  56. Thut G., Nietzel A., Brandt S.A., Pascual-Leone A. Alpha-band electroen-cephalographic activity over occipital cortex indexes visuospatial attention biasand predicts visual target detection. J. Neurosci. 2006; 26 (37): 9494–9502. DOI: 10.1523/JNEUROSCI.0875-06.2006.

  57. Napalkov D.A., Ratmanova P.O., Salikhova R.N., Kolikov M.B. Elektroentsefalograficheskie korrelyaty optimal'nogo funktsional'nogo sostoyaniya golovnogo mozga sportsmena v strelkovom sporte [Electroencephalographic markers of optimal performance in marksmen]. Byulleten' sibirskoy meditsiny. 2013; 12 (2): 219–226 (in Russian).

  58. Klimesch W., Doppelmayr M., Pachinger T., Russegger H. Event-relateddesynchronization in the alpha band and the processing of semantic informa-tion. Cogn. Brain Res. 1997; 6 (2): 83–94. DOI: 10.1016/s092610(97)00018-9.

  59. Klimesch W., Doppelmayr M., Russegger H., Pachinger T., Schwaiger J. Induced alpha band power changes in the human EEG and attention. Neurosci. Lett. 1998; 244 (2): 73–76. DOI: 10.1016/s0304-3940(98)00122-0.

  60. Jensen O., Tesche C.D. Frontal theta activity in humans increases with mem-ory load in a working memory task. Eur. J. Neurosci. 2002; 15 (8): 1395–9. DOI: 10.1046/j.1460-9568.2002.01975.x.

  61. Tuladhar A.M., Huurne N., Schoffelen J.M., Maris E., Oostenveld R., Jensen O. Parieto-occipital sources account for the increase in alpha activity withworking memory load. Hum. Brain Mapp. 2007; 28 (8): 785–92. DOI: 10.1002/hbm.20306.

  62. Hummel F., Andres F., Altenmuller E., Dichgans J., Gerloff C. Inhibitory control of acquired motor programmes in the human brain. Brain. 2002; 125 (2): 404–420. DOI: 10.1093/brain/awf030.

  63. Jancke L., Lutz K., Koeneke S. Converging evidence of ERD/ERS and BOLD responses in motor control research. Prog. Brain Res. 2006; 159: 261–271. DOI: 10.1016/S0079-6123(06)59018-1.

  64. Loze G.M., Collins D., Holmes P.S. Pre-shot EEG alpha-power reactivity during expert air-pistol shooting: a comparison of best and worst shots. J. Sports Sci. 2001; 19 (9): 727–733. DOI: 10.1080/02640410152475856.

  65. Chernyy S.V., Mishin N.P., Nagaeva E.I. Osobennosti elektroentsefalogrammy sportsmenov atsiklicheskikh vidov sporta [Electroencephalogram of athletes going in for acyclic sports]. 2016; 2 (68): 45–54. Available at: https://www.elibrary.ru/item.asp?id=28130360 (accessed: February 20, 2023) (in Russian).

  66. Soroko S.I., Trubachev V.V. Neyrofiziologicheskie i psikhofiziologicheskie osnovy adaptivnogo bioupravleniya [Neurophysiological and psychophysiological foundations of adaptive biofeedback]. St. Petersburg: Politekhnika-servis; 2010. 188 (in Russian).

  67. Alekseeva M.V., Balioz N.B., Muravleva K.B., Sapina E.A., Bazanova O.M. Ispol'zovanie treninga proizvol'nogo uvelicheniya moshchnosti EEG v individual'nom vysokochastotnom al'fa-diapazone dlya uluchsheniya kognitivnoy deyatel'nosti [Training for voluntary increasing individual upper α-power as a method for cognitive enhancement]. Fiziologiya cheloveka. 2012; 6 (37): 1–10 (in Russian).

  68. Bazanova O.M., Vernon D., Lazareva O.Yu., Muravleva K.B., Skoraya M.V. Vliyanie al'fa-, EMG-bioupravleniya i tekhnik proizvol'noy samoregulyatsii na pokazateli kognitivnykh funktsiy i al'fa-aktivnost' EEG [Influence of alpha-, EMG-biofeedback and voluntary self-regulation techniques on indicators of cognitive functions and EEG alpha-activity]. Byulleten' sibirskoy meditsiny. 2013; 12 (2): 36–42. DOI: 10.20538/1682-0363-2013-2-36-42 (in Russian).

  69. Park J.L., Fairweather M.M., Donaldson D.I Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 2015; 52: 117–130. DOI: 10.1016/j.neubiorev.2015.02.014.

  70. Harkness T. Psykinetics and Biofeedback: Abhinav Bindra wins India's first-ever individual Gold Medal in Beijing Olympics. Biofeedback. 2009; 37 (2): 48–52. DOI: 10.5298/1081-5937-37.2.48.

  71. Haufler A.J., Spalding T.W., Santa Maria D.L., Hatfield B.D. Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biol. Psychol. 2000; 53 (2–3): 131–160. DOI: 10.1016/s0301-0511(00)00047-8.

  72. Illarionova A.V., Krivoshchekov S.G., Il'in A.A., Kapilevich L.V. Fiziologicheskie osobennosti formirovaniya dvigatel'noy koordinatsii na osnove trenirovok s biologicheskoy obratnoy svyaz'yu [Physiological features of motor coordination formation based on training with biological feedback]. Fiziologiya cheloveka. 2022; 48 (4): 5–21. DOI: 10.31857/S013116462204004X (in Russian).

  73. Del Percio C., Infarinato F., Marzano N., Iacoboni M., Aschieri P., Lizio R., Soricelli A., Limatola C., Rossini P.M., Babiloni C. Reactivity of alpha rhythms to eyes opening is lower in athletes than non-athletes: a highresolution EEG study. Int. J. Psychophysiol. 2011; 82 (3): 240–247. DOI: 10.1016/j.ijpsycho.2011.09.005.

  74. Ermutlu N., Yücesir I., Eskikurt G., Temel T. Brain electrical activities of dancers and fast ball sports athletes are different. Cogn. Neurodyn. 2015; 9 (2): 257–263. DOI: 10.1007/s11571-014-9320-2.

  75. Baumeister J., von Detten S., van Niekerk S.M., Schubert M., Ageberg E., Louw Q.A. Brain activity in predictive sensorimotor control for landings: an EEG pilot study. Int J Sports Med. 2013; 34 (12): 1106–1111. DOI: 10.1055/s-0033-1341437.

  76. Cherapkina L.P. Osobennosti patterna EEG u sportsmenov, zanimayushchikhsya tsiklicheskimi vidami sporta [EEG patterns in athletes involved in cyclic sports]. Aktual'nye problemy adaptivnoy fizicheskoy kul'tury i sporta: materialy Vserossiyskoy nauchno-prakticheskoy konferentsii [Topical problems of adaptive physical culture and sports: Proceedings of the All-Russian scientific and practical conference]. February 17–18, 2016. Omsk; 2016: 291–299 (in Russian).

  77. Tsai C.L., Chen F.C., Pan C.Y., Wang C.H., Huang T.H., Chen T.C. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinolog. 2014; 41: 121–131. DOI: 10.1016/j.psyneuen.2013.12.014.

  78. Balioz N.V., Krivoshchekov S.G. Individual'no-tipologicheskie osobennosti EEG sportsmenov pri ostrom gipoksicheskom vozdeystvii [Individual typological features in the EEG of athletes after acute hypoxic treatment]. Fiziologiya cheloveka. 2012; 38 (5): 24–32 (in Russian).

  79. Jann K., Koenig T., Dierks T., Boesch C., Federspiel A. Association of individual resting state EEG alpha frequency and cerebral blood flow. Neuroimage. 2010; 51: 365–72. DOI: 10.1016/j.neuroimage.2010.02.024. PMID: 20156573.

  80. Grandy T.H., Werkle-Bergner M., Chicherio C., Schmiedek F., LoЁvdeґn M., Lindenberger U. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology. 2013; 50: 570–582. DOI: 10.1111/psyp.12043.

  81. Bodenmann S., Rusterholz T., Dürr R., Stoll C., Bachmann V., Geissler E., Jaggi-Schwarz K., Landolt H.-P. The functional Val158Met polymorphism of COMT predicts interindividual differences in brain α oscillations in young men. J. Neurosci. 2009; 29: 10855–10862. DOI: 10.1523/JNEUROSCI.1427-09.2009.

  82. Smit C.M., Wright M.J., Hansell N.K., Geffen G.M., Martin N.G. Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample. Int. J. Psychophysiol. 2006; 61 (2): 235–243. DOI: 10.1016/j.ijpsycho.2005.10.004.

  83. Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance. Brain Topography. 1993; 5: 241–51. DOI: 10.1007/BF01128991. PMID: 8507550.

  84. Christie S., Di Fronso S., Bertollo M., Werthner P. Individual Alpha Peak Frequency in Ice Hockey Shooting Performance. Front Psychol. 2017; 8: 762. DOI: 10.3389/fpsyg.2017.00762. PMID: 28559868.

  85. Bherer L., Erickson K.I., Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. Aging Res. 2013; 2013: 657508. DOI: 10.1155/2013/657508.

  86. Kramer A.F., Colcombe S. Fitness effects on the cognitive function of older adults: a meta-analytic study- revisited. Perspect. Psychol. Sci. 2018; 13: 213–217. DOI: 10.1111/1467-9280.t01-1-01430.

  87. Crespillo-Jurado M., Delgado-Giralt J., Reigal R.E., Rosado A., Wallace-Ruiz A., Juárez Ruiz de Mier R. Body composition and cognitive functioning in a sample of active elders. Front. Psychol. 2019; 10: 1569. DOI: 10.3389/fpsyg.2019.01569.

  88. Zhu W., Wadley V.G., Howard V.J., Hutto B., Blai S.N., Hooker S.P. Objectively Measured Physical Activity and Cognitive Function in Older Adults. Med. Sci. Sport Exerc. 2017; 49: 47–53. DOI: 10.1249/ MSS.0000000000001079.

  89. Gul'tyaeva V.V., Zinchenko M.I., Uryumtsev D.Yu., Krivoshchekov S.G., Aftanas L.I. Fizicheskaya nagruzka pri lechenii depressii. Fiziologicheskie mekhanizmy [Exercise for depression treatment. Physiological mechanisms]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019; 119 (7): 112–119. DOI: 10.17116/jnevro2019119071112 (in Russian).

  90. Gul'tyaeva V.V., Zinchenko M.I., Uryumtsev D.Yu., Krivoshchekov S.G., Aftanas L.I. Fizicheskaya nagruzka pri lechenii depressii. Rezhimy i vidy nagruzki [Exercise for depression treatment. Exercise modalities Modes and types]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019; 119 (9): 136–142. DOI: 10.17116/jnevro2019119091136 (in Russian).

  91. Jin Y., O’Halloran J.P., Plon L., Sandman C.A., Potkin S.G. Alpha EEG predicts visual reaction time. Int. J. Neurosci. 2006; 116: 1035–1044. DOI: 10.1080/00207450600553232. PMID: 16861166.

  92. Basar E., Yordanova J., Kolev V., Basar-Eroglu C. Is the alpha rhythm a control parameter for brain responses? Biological Cybernetics. 1997; 76: 471–80. DOI: 10.1007/s004220050360. PMID: 9263433.

  93. Bornkessel I.D., Fiebach C.J., Friederici A.D., Schlesewsky M. "Capacity" reconsidered: interindividual differences in language comprehension and individual alpha frequency. Exp Psychol. 2004; 51: 279–289. DOI: 10.1027/1618-3169.51.4.279. PMID: 15620229.

  94. Rathee S., Bhatia D., Punia V., Singh R. Peak Alpha Frequency in Relation to Cognitive Performance. J Neurosci Rural Pract. 2020; 11: 416–419. DOI: 10.1055/s-0040-1712585. PMID: 32753806.

  95. Billiot K.M., Budzynski T.H., Andrasik F. EEG Patterns and Chronic Fatigue Syndrome. Journal of Neurotherapy. 1997; 2: 20–30. DOI: 10.1300/J184v02n02_04.

  96. Hülsdünker T., Mierau A., Struёder H.K. Higher Balance Task Demands are Associated with an Increase in Individual Alpha Peak Frequency. Front Hum Neurosci. 2015; 9: 695. DOI: 10.3389/fnhum.2015.00695. PMID: 26779005.

  97. Gutmann B., Mierau A., Hülsdünker T., Hildebrand C., Przyklenk A., Hollmann W. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural Plast. 2015; 2015: 1–6. DOI: 10.1155/2015/717312. PMID: 25759762.

  98. Gutmann B., Zimmer P., Hülsdünker T., Lefebvre J., Binneböbel S., Oberste M. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neurosci Lett. 2018; 668: 159–163. DOI: 10.1016/j.neulet.2018.01.007. PMID: 29329910.

  99. Sadaghiani S., Scheeringa R., Lehongre K., Morillon B., Giraud A-L., Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci. 2010; 30: 10243–10250. DOI: 10.1523/JNEUROSCI.1004-10.2010. PMID: 20668207.

  100. Christie S., Di Fronso S., Bertollo M., Werthner P. Individual Alpha Peak Frequency in Ice Hockey Shooting Performance. Front Psychol. 2017; 8: 762. DOI: 10.3389/fpsyg.2017.00762. PMID: 28559868.

  101. Zhang Y., Lu Y, Wang D., Zhou C., Xu C. Relationship between individual alpha peak frequency and attentional performance in a multiple object tracking task among ice-hockey players. PLoS One. 2021; 16 (5): e0251443. DOI: 10.1371/journal.pone.0251443.

  102. Faubert J. Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Sci Rep. 2013; 3: 1154. DOI: 10.1038/srep01154.

  103. Hülsdünker T., Mierau A. Visual Perception and Visuomotor Reaction Speed Are Independent of the Individual Alpha Frequency. Front Neurosci. 2021; 8; 15. DOI: 026610.3389/fnins.2021.620266. PMID: 33897344. MCID: PMC8060564.

 

Received April 03, 2023; accepted July 28, 2023.

 

Information about the authors

Balioz Natal'ya Vladimirovna, Candidate of Sciences (Biology), Researcher, Laboratory of Body Functional Reserves, Scientific Research Institute of Neuroscience and Medicine. 630117, Russia, Novosibirsk, Timakov St., 4; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0002-5482-5986

Arkhipova Elizaveta Evgen'evna, Postgraduate Student, Novosibirsk State University of Economics and Management. 630099, Russia, Novosibirsk, Kamenskaya St., 56; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2599-5214

Mozolevskaya Natal'ya Vladimirovna, Candidate of Sciences (Biology), Associate Professor, Chair of Psychology and Pedagogy, Novosibirsk State University of Economics and Management. 630099, Russia, Novosibirsk, Kamenskaya St., 56; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0007-1108-0105

Krivoshchekov Sergey Georgievich, Doctor of Sciences (Medicine), Professor, Head of the Laboratory of Functional Reserves of the Body, Scientific Research Institute of Neuroscience and Medicine. 630117, Russia, Novosibirsk, Timakov St., 4; Novosibirsk State University of Economics and Management. 630099, Russia, Novosibirsk, Kamenskaya St., 56; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2306-829X

 

For citation

Balioz N.V., Arkhipova E.E., Mozolevskaya N.V., Krivoshchekov S.G. Elektroentsefalograficheskie markery funktsional'nogo sostoyaniya tsentral'noy nervnoy sistemy v sportivnoy praktike [Electroencephalographic markers of CNS functional state in sport]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2023; 3: 30–48. DOI: 10.34014/2227-1848-2023-3-30-48 (in Russian).

 

Скачать статью

УДК 612.821

DOI 10.34014/2227-1848-2023-3-30-48

ЭЛЕКТРОЭНЦЕФАЛОГРАФИЧЕСКИЕ МАРКЕРЫ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ В СПОРТИВНОЙ ПРАКТИКЕ

Н.В. Балиоз1, Е.Е. Архипова2, Н.В. Мозолевская2, С.Г. Кривощеков1,2

1ФГБНУ «Научно-исследовательский институт нейронаук и медицины», г. Новосибирск, Россия;

2ФГБОУ ВО «Новосибирский государственный университет экономики и управления», г. Новосибирск, Россия

 

Во всем мире существует повышенный интерес спортивных специалистов к привлечению новых технологий в тренировочный процесс для совершенствования спортивного мастерства. По литературным данным, важное место при оценке функционального состояния спортсменов занимают ЭЭГ-маркеры динамики когнитивных функций, сенсомоторной интеграции и психологической устойчивости. Показано, что у представителей спортивной элиты, помимо высокого уровня физической подготовки, развиваются специфичные для определенного вида спорта когнитивные навыки, а также высокая сенсомоторная интеграция, улучшение внимания, восприятия, скорости обработки информации и другие характеристики, нацеленные на обеспечение высокой работоспособности спортсмена. В обзоре представлен систематический анализ публикаций, посвященных изучению взаимосвязи физической активности и функционального состояния ЦНС. Установлено, что при исследовании влияния физических нагрузок с высокой и низкой интенсивностью в качестве нейрофизиологических маркеров состояния когнитивных функций хорошо зарекомендовали себя показатели мощности и частоты альфа-ритма ЭЭГ.

При анализе использовались базы данных Medline, Web of Science, Scopus, Pubmed, Cochrane, Embase, Google Scholar, eLIBRARY.

Ключевые слова: физическая активность, когнитивные функции, спортивные результаты, электроэнцефалография, альфа-ритм.

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов

Литературный поиск, обработка материала: Балиоз Н.В., Архипова Е.Е., Мозолевская Н.В.

Анализ и интерпретация данных: Балиоз С.Г., Архипова Е.Е., Мозолевская Н.В.

Написание и редактирование текста: Балиоз С.Г., Кривощеков С.Г.

 

Литература

  1. Fister I., Fister D., Deb S., Mlakar U., Brest J. Post hoc analysis of sport performance with differential evolution. Neural Comput. Appl. 2018: 1–10. DOI: 10.1007/s00521-018-3395-3.

  2. Henriksen K., Storm L.K., Stambulova N., Pyrdol N., Larsen C.H. Successful and less successful interventions with youth and senior athletes: insights from expert sport psychology practitioners. J. Clin. Sport Psychol. 2019; 13 (1): 72–94. DOI: 10.1123/jcsp.2017-0005.

  3. Dalen T., Sandmae S., Stevens T.G., Hjelde G.H., Kjøsnes T.N., Wisløff U. Differences in acceleration and high-intensity activities between small-sided games and peak periods of official matches in elite soccer players. J. Strength Cond. Res. 2021; 35 (7): 2018–2024. DOI: 10.1519/JSC.0000000000003081.

  4. Yarrow K., Brown P., Krakauer J.W. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat. Rev. Neurosci. 2009; 10 (8): 585–596. DOI: 10.1038/nrn2672.

  5. Chang Y., Lee J.J., Seo J.H., Song H.J., Kim Y.T., Lee H.J. Neural correlates of motor imagery for elite archers. NMR Biomed. 2011; 24: 366–372. DOI: 10.1002/nbm.1600.

  6. Жуина Д.В., Майдокина Л.Г. Психологические особенности спортсменов-победителей. Современные проблемы науки и образования. 2014; 6: 1519–1522. URL: https://www.elibrary.ru/item.asp?id=22878836 (дата обращения: 20.02.2023).

  7. Вергунов Е.Г., Николаева Е.И., Балиоз Н.В., Кривощёков С.Г. Латеральные предпочтения как возможные фенотипические предикторы резервов сердечно-сосудистой системы и особенности сенсомоторной интеграции у альпинистов. Физиология человека. 2018; 44 (3): 97–108. DOI: 10.7868/S0131164618030116.

  8. Zhang L., Qiu F., Zhu H., Xiang M., Zhou L. Neural Efficiency and Acquired Motor Skills: An fMRI Study of Expert Athletes. Front Psychol. 2019; 6 (10): 27–38. DOI: 10.3389/fpsyg.2019.02752. PMID: 31866917. PMCID: PMC6908492.

  9. Cabeza R., Albert M., Belleville S., Craik F.I., Duarte A., Grady C.L. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 2018; 19: 701–710. DOI: 10.1038/s41583-018-0068-2.

  10. Dumoulin S.O., Fracasso A., Van der Zwaag W., Siero J.C., Petridou N. Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function. Neuroimage. 2018; 168: 345–357. DOI: 10.1016/j.neuroimage.2017.01.028.

  11. Fink A., Rominger C., Benedek M., Perchtold C.M., Papousek I., Weiss E.M. EEG alpha activity during imagining creative moves in soccer decision-making situations. Neuropsychologia. 2018; 114: 118–124. DOI: 10.1016/j.neuropsychologia.2018.04.025.

  12. Кабачкова А.В., Захарова А.Н., Кривощеков С.Г., Капилевич Л.В. Двигательная активность и когнитивная деятельность: особенности взаимодействия и механизмы влияния. Физиология человека. 2022; 48 (5): 126–136. DOI: 10.31857/S0131164622700102.

  13. Costanzo M.E., VanMeter J.W., Janelle C.M., Braun A., Miller M.W., Oldham J. Neural efficiency in expert cognitive-motor performers during affective challenge. J. Mot. Behav. 2016; 48: 573–588. DOI: 10.1080/00222895.2016.1161591.

  14. Cheron G., Petit G., Cheron J., Leroy A., Cebolla A., Cevallos C. Brain oscillations in sport: toward EEG biomarkers of performance. Front. Psychol. 2016; 7: 246–271. DOI: 10.3389/fpsyg.2016.00246.

  15. Chaddock-Heyman L., Erickson K.I., Voss M.W., Knech A.M., Pontifex M.B., Castelli D.M. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Front. Hum. Neurosci. 2013; 7: 72. DOI: 10.3389/fnhum.201300072.

  16. Fontes E.B., Okano A.H., De Guio F., Schabort E.J., Min L.L., Basset F.A. Brain activity and perceived exertion during cycling exercise: an fMRI study. Br. J. Sport Med. 2015; 49: 556–560. DOI: 10.1136/bjsports-2012-091924.

  17. Boecker H., Drzezga A. A perspective on the future role of brain pet imaging in exercise science. Neuroimage. 2016; 131: 73–80. DOI: 10.1016/j.neuroimage.2015.10.021.

  18. Shih C.H., Moore K., Browner N., Sklerov M., Dayan E. Physical activity mediates the association between striatal dopamine transporter availability and cognition in Parkinson’s disease. Parkinsonism Relat. Disord. 2019; 62: 68–72. DOI: 10.1016/j.parkreldis.2019.01.027.

  19. Zhang L., Qiu F., Zhu H., Xiang M., Zhou L. Neural Efficiency and Acquired Motor Skills: An fMRI Study of Expert Athletes. Front Psychol. 2019; 6 (10): 27–38. DOI: 10.3389/fpsyg.2019.02752. PMID: 31866917. PMCID: PMC6908492.

  20. Huang P., Fang R., Li B.Y., Chen S.D. Exercise-related changes of networks in aging and mild cognitive impairment brain. Front. Aging Neurosci. 2016; 8: 47. DOI: 10.3389/fnagi.2016.00047.

  21. Pedersen B.K., Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015; 25 (3): 1–72. DOI: 10.1111/sms.12581.

  22. Cassilhas R.C., Tufik S., De Mello M.T. Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci. 2016; 73: 975–983. DOI: 10.1007/s00018-015-2102-0.

  23. Mellow M.L., Goldsworthy M.R., Coussens S., Smith A.E. Acute aerobic exercise and neuroplasticity of the motor cortex: a systematic review. J. Sci. Med. Sports. 2019; 23: 408–414. DOI: 10.1016/j.jsams.2019.10.015.

  24. Hicks S.D., Jacob P., Perez O., Baffuto M., Gagnon Z., Middleton F.A. The transcriptional signature of a runner’s high. Med. Sci. Sports Exerc. 2019; 51: 970–978. DOI: 10.1249/MSS.0000000000001865.

  25. Sparling P.B., Giuffrida A., Piomelli D., Rosskopf L., Dietrich A. Exercise activates the endocannabinoid system. Neuroreport. 2003; 14: 2209–2211. DOI: 10.1097/00001756-200312020-00015.

  26. Skosnik P.D., Hajos M., Cortes-Briones J.A., Edwards C.R., Pittman B.P., Hoffmann W.E. Cannabinoid receptor-mediated disruption of sensory gating and neural oscillations: a translational study in rats and humans. Neuropharmacology. 2018; 135: 412–423. DOI: 10.1016/j.neuropharm.2018.03.036.

  27. Verburgh L., Scherder E.J., Van Lange P.A., Oosterlaan J. Executive functioning in highly talented soccer players. PLoS One. 2014; 9 (3): e91254. DOI: 10.1371/journal.pone.0091254.

  28. Vestberg T., Reinebo G., Maurex L., Ingvar M., Petrovic P. Core executive functions are associated with success in young elite soccer players. PLoS One. 2017; 12: e0170845. DOI: 10.1371/journal.pone.0170845.

  29. Policastro F., Accardo A., Marcovich R., Pelamatti G., Zoia S. Relation between motor and cognitive skills in italian basketball players aged between 7 and 10 Years Old. Sports (Basel). 2018; 6 (3): 80. DOI: 10.3390/sports6030080.

  30. Qiu F., Pi Y., Liu K., Li X., Zhang J., Wu Y. Influence of sports expertise level on attention in multiple object tracking. Peer J. 2018; 6: e5732. DOI: https://doi.org/10.7717/peerj.5732. PMID: 30280051.

  31. Kudo K., Ito T., Tsutsui S., Yamamoto Y., Ishikura T. Compensatory coordination of release parameters in a throwing task. J. Mot. Behav. 2000; 32 (4): 337–345. DOI: 10.1080/00222890009601384.

  32. Kudo K., Ohtsuki T. Adaptive variability in skilled human movements. Inform. Media Technol. 2008; 3 (1): 409–420. DOI: 10.1527/tjsai.23.151.

  33. Давлетьярова К.В., Нагорнов М.С., Кривощеков С.Г., Ильин А.А., Капилевич Л.В. Физиологические характеристики двигательных навыков ударных действий у футболистов с ограниченными возможностями здоровья. Физиология человека. 2022; 48 (2): 5–13. URL: https://www.elibrary.ru/item.asp?id=48022777 (дата обращения: 20.02.2023). DOI: 10.31857/S0131164622010040.

  34. Fontani G., Maffei D., Cameli S., Polidori F. Reactivity and event-related potentials during attentional tests in athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1999; 80 (4): 308–317. DOI: 10.1007/s004210050597.

  35. Kudo K., Miyazaki M., Kimura T., Yamanaka K., Kadota H., Hirashima M., Nakajima Y., Nakazawa K., Ohtsuki T. Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: an fMRI study. NeuroImage. 2004; 22 (3): 1291–1301. DOI: 10.1016/j.neuroimage.2004.03.043.

  36. Laurienti P.J., Burdette J.H., Wallace M.T., Yen Y.F., Field A.S., Stein B.E. Deactivation of sensory-specific cortex by cross-modal stimuli. J. Cogn. Neurosci. 2002; 14 (3): 420–429. DOI: 10.1162/089892902317361930.

  37. Loprinzi P.D., Ponce P., Frith E. Hypothesized mechanisms through which acute exercise influences episodic memory. Physiology International. 2018; 105 (4): 285–297. DOI: 10.1556/2060.105.2018.4.28.

  38. Rossini P.M., Di Iorio R., Bentivoglio M., Bertini G., Ferreri F., Gerloff C. Methods for analysis of brain connectivity: an IFCN-sponsored review. Clin. Neurophysiol. 2019; 130: 1833–1858. DOI: 10.1016/j.clinph.2019.06.006.

  39. Gwin J.T., Gramann K., Makeig S., Ferris D.P. Removal of movement artifact from high-density EEG recorded during walking and running. J. Neurophysiol. 2010; 103: 3526–3534. DOI: 10.1152/jn.00105.2010.

  40. Crews D.J., Landers D.M. Electroencephalographic measures of attentionalpatterns prior to the golf putt. Med. Sci. Sports Exerc. 1993; 25 (1): 116–126. DOI: 10.1249/00005768-199301000-00016.

  41. Salazar W., Landers D.M., Petruzzello S.J., Han M.W., Crews D.J., Kubitz K.A. Hemispheric asymmetry, cardiac response, and performance in elite archers. Res. Q. Exerc. Sport. 1990; 61 (4): 351–359. DOI: 10.1080/02701367.1990.10607499.

  42. Nakata H., Yoshie M., Miura A., Kudo K. Characteristics of the athletes' brain: Evidence from neurophysiology and neuroimaging (Review). Japan Society for the Promotion of Science. 2010; 62: 197–211. DOI: 10.1016/j.brainresrev.2009.11.006.

  43. Wilson V.E., Dikman Z., Bird E.I., Williams J.M., Harmison R., Shaw-Thornton L., Schwartz G.E. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers (Review). Appl Psychophysiol Biofeedback. 2016: 41 (1): 121–127. DOI: 10.1007/s10484-015-9307-8.

  44. Lubar J.F., Shouse M.N. EEG and behavioral changes in a hyperkinetic childconcurrent with training of the sensorimotor rhythm (SMR): a preliminary report. Biofeedback Self-Regul. 1976; 1 (3): 293–306. DOI: 10.1007/BF01001170.

  45. Landers D.M., Petruzzello S.J., Salazar W., Crews, D.J. The influence of electro-cortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exerc. 1991; 23 (1): 123–129.

  46. Gordon E.M., Chauvin R.J., Van A.N. A somato-cognitive action network alternates with effector regions in motor cortex. Nature. 2023. DOI: 10.1038/s41586-023-05964-2. PMID: 37076628.

  47. Fumoto M., Oshima T., Kamiya K. Ventral prefrontal cortex and serotonergic system activation during pedaling exercise induces negative mood improvement and increased alpha band in EEG. Behavioural Brain Research. 2010; 213 (1): 1–9. DOI: 10.1016/j.bbr.2010.04.017.

  48. Basar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 2012; 86 (1): 1–24. DOI: 10.1016/j.ijpsycho.2012.07.002.

  49. Bazanova O.M., Vernon D. Interpreting EEG alpha activity. Neurosci. Biobe-hav. Rev. 2013; 44: 94–110. DOI: 10.1016/j.neubiorev.2013.05.007.

  50. Cooper N.R., Croft R.J., Dominey S.J., Burgess A.P., Gruzelier J.H. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 2003; 47 (1): 65–74. DOI: 10.1016/s0167-8760(02)00107-1.

  51. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: the inhibition timing hypothesis. Brain Res. Rev. 2007; 53 (1): 63–88. DOI: 10.1016/j.brainresrev.2006.06.003.

  52. Foxe J.J., Snyder A.C. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2011; 2: 154. DOI: 10.3389/fpsyg.2011.00154.

  53. Mathewson K.E., Lleras A., Beck D.M., Fabiani M., Ro T., Gratton G. Pulsed out of awareness: EEG alpha oscillations represent a pulsed inhibition of ongoing cortical processing. Front. Psychol. 2011; 2: 99. DOI: 10.3389/fpsyg.2011.00099.

  54. Jensen O., Bonnefond M., VanRullen R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn. Sci. 2012; 16: 200–206.

  55. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 1999; 29 (2): 169–195.

  56. Thut G., Nietzel A., Brandt S.A., Pascual-Leone A. Alpha-band electroen-cephalographic activity over occipital cortex indexes visuospatial attention biasand predicts visual target detection. J. Neurosci. 2006; 26 (37): 9494–9502. DOI: 10.1523/JNEUROSCI.0875-06.2006.

  57. Напалков Д.А., Ратманова П.О., Салихова Р.Н., Коликов М.Б. Электроэнцефалографические корреляты оптимального функционального состояния головного мозга спортсмена в стрелковом спорте. Бюллетень сибирской медицины. 2013; 12 (2): 219–226.

  58. Klimesch W., Doppelmayr M., Pachinger T., Russegger H. Event-relateddesynchronization in the alpha band and the processing of semantic informa-tion. Cogn. Brain Res. 1997; 6 (2): 83–94. DOI: 10.1016/s0926-6410(97)00018-9.

  59. Klimesch W., Doppelmayr M., Russegger H., Pachinger T., Schwaiger J. Induced alpha band power changes in the human EEG and attention. Neurosci. Lett. 1998; 244 (2): 73–76. DOI: 10.1016/s0304-3940(98)00122-0.

  60. Jensen O., Tesche C.D. Frontal theta activity in humans increases with mem-ory load in a working memory task. Eur. J. Neurosci. 2002; 15 (8): 1395–9. DOI: 10.1046/j.1460-9568.2002.01975.x.

  61. Tuladhar A.M., Huurne N., Schoffelen J.M., Maris E., Oostenveld R., Jensen O. Parieto-occipital sources account for the increase in alpha activity withworking memory load. Hum. Brain Mapp. 2007; 28 (8): 785–92. DOI: 10.1002/hbm.20306.

  62. Hummel F., Andres F., Altenmuller E., Dichgans J., Gerloff C. Inhibitory control of acquired motor programmes in the human brain. Brain. 2002; 125 (2): 404–420. DOI: 10.1093/brain/awf030.

  63. Jancke L., Lutz K., Koeneke S. Converging evidence of ERD/ERS and BOLD responses in motor control research. Prog. Brain Res. 2006; 159: 261–271. DOI: 10.1016/S0079-6123(06)59018-1.

  64. Loze G.M., Collins D., Holmes P.S. Pre-shot EEG alpha-power reactivity during expert air-pistol shooting: a comparison of best and worst shots. J. Sports Sci. 2001; 19 (9): 727–733. DOI: 10.1080/02640410152475856.

  65. Черный С.В., Мишин Н.П., Нагаева Е.И. Особенности электроэнцефалограммы спортсменов ациклических видов спорта. 2016; 2 (68): 45–54. URL: https://www.elibrary.ru/item.asp?id=28130360 (дата обращения: 20.02.2023).

  66. Сороко С.И., Трубачев В.В. Нейрофизиологические и психофизиологические основы адаптивного биоуправления. СПб.: Политехника-сервис; 2010. 188.

  67. Алексеева М.В., Балиоз Н.Б., Муравлёва К.Б., Сапина Е.A., Базанова О.М. Использование тренинга произвольного увеличения мощности ЭЭГ в индивидуальном высокочастотном альфа-диапазоне для улучшения когнитивной деятельности. Физиология человека. 2012; 6 (37): 1–10.

  68. Базанова О.М., Вернон Д., Лазарева О.Ю., Муравлёва К.Б., Скорая М.В. Влияние альфа-, ЭМГ-биоуправления и техник произвольной саморегуляции на показатели когнитивных функций и альфа-активность ЭЭГ. Бюллетень сибирской медицины. 2013; 12 (2): 36–42. DOI: 10.20538/1682-0363-2013-2-36-42.

  69. Park J.L., Fairweather M.M., Donaldson D.I Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 2015; 52: 117–130. DOI: 10.1016/j.neubiorev.2015.02.014.

  70. Harkness T. Psykinetics and Biofeedback: Abhinav Bindra wins India's first-ever individual Gold Medal in Beijing Olympics. Biofeedback. 2009; 37 (2): 48–52. DOI: 10.5298/1081-5937-37.2.48.

  71. Haufler A.J., Spalding T.W., Santa Maria D.L., Hatfield B.D. Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biol. Psychol. 2000; 53 (2–3): 131–160. DOI: 10.1016/s0301-0511(00)00047-8.

  72. Илларионова А.В., Кривощеков С.Г., Ильин А.А., Капилевич Л.В. Физиологические особенности формирования двигательной координации на основе тренировок с биологической обратной связью. Физиология человека. 2022; 48 (4): 5–21. DOI: 10.31857/S013116462204004X.

  73. Del Percio C., Infarinato F., Marzano N., Iacoboni M., Aschieri P., Lizio R., Soricelli A., Limatola C., Rossini P.M., Babiloni C. Reactivity of alpha rhythms to eyes opening is lower in athletes than non-athletes: a highresolution EEG study. Int. J. Psychophysiol. 2011; 82 (3): 240–247. DOI: 10.1016/j.ijpsycho.2011.09.005.

  74. Ermutlu N., Yücesir I., Eskikurt G., Temel T. Brain electrical activities of dancers and fast ball sports athletes are different. Cogn. Neurodyn. 2015; 9 (2): 257–263. DOI: 10.1007/s11571-014-9320-2.

  75. Baumeister J., von Detten S., van Niekerk S.M., Schubert M., Ageberg E., Louw Q.A. Brain activity in predictive sensorimotor control for landings: an EEG pilot study. Int J Sports Med. 2013; 34 (12): 1106–1111. DOI: 10.1055/s-0033-1341437.

  76. Черапкина Л.П. Особенности паттерна ЭЭГ у спортсменов, занимающихся циклическими видами спорта. Актуальные проблемы адаптивной физической культуры и спорта: материалы Всероссийской научно-практической конференции. 17–18 февраля 2016. Омск; 2016: 291–299.

  77. Tsai C.L., Chen F.C., Pan C.Y., Wang C.H., Huang T.H., Chen T.C. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinolog. 2014; 41: 121–131. DOI: 10.1016/j.psyneuen.2013.12.014.

  78. Балиоз Н.В., Кривощеков С.Г. Индивидуально-типологические особенности ЭЭГ спортсменов при остром гипоксическом воздействии. Физиология человека. 2012; 38 (5): 24–32.

  79. Jann K., Koenig T., Dierks T., Boesch C., Federspiel A. Association of individual resting state EEG alpha frequency and cerebral blood flow. Neuroimage. 2010; 51: 365–72. DOI: 10.1016/j.neuroimage.2010.02.024. PMID: 20156573.

  80. Grandy T.H., Werkle-Bergner M., Chicherio C., Schmiedek F., LoЁvdeґn M., Lindenberger U. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology. 2013; 50: 570–582. DOI: 10.1111/psyp.12043.

  81. Bodenmann S., Rusterholz T., Dürr R., Stoll C., Bachmann V., Geissler E., Jaggi-Schwarz K., Landolt H.-P. The functional Val158Met polymorphism of COMT predicts interindividual differences in brain α oscillations in young men. J. Neurosci. 2009; 29: 10855–10862. DOI: 10.1523/JNEUROSCI.1427-09.2009.

  82. Smit C.M., Wright M.J., Hansell N.K., Geffen G.M., Martin N.G. Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample. Int. J. Psychophysiol. 2006; 61 (2): 235–243. DOI: 10.1016/j.ijpsycho.2005.10.004.

  83. Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance. Brain Topography. 1993; 5: 241–51. DOI: 10.1007/BF01128991. PMID: 8507550.

  84. Christie S., Di Fronso S., Bertollo M., Werthner P. Individual Alpha Peak Frequency in Ice Hockey Shooting Performance. Front Psychol. 2017; 8: 762. DOI: 10.3389/fpsyg.2017.00762. PMID: 28559868.

  85. Bherer L., Erickson K.I., Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. Aging Res. 2013; 2013: 657508. DOI: 10.1155/2013/657508.

  86. Kramer A.F., Colcombe S. Fitness effects on the cognitive function of older adults: a meta-analytic study- revisited. Perspect. Psychol. Sci. 2018; 13: 213–217. DOI: 10.1111/1467-9280.t01-1-01430.

  87. Crespillo-Jurado M., Delgado-Giralt J., Reigal R.E., Rosado A., Wallace-Ruiz A., Juárez Ruiz de Mier R. Body composition and cognitive functioning in a sample of active elders. Front. Psychol. 2019; 10: 1569. DOI: 10.3389/fpsyg.2019.01569.

  88. Zhu W., Wadley V.G., Howard V.J., Hutto B., Blai S.N., Hooker S.P. Objectively Measured Physical Activity and Cognitive Function in Older Adults. Med. Sci. Sport Exerc. 2017; 49: 47–53. DOI: 10.1249/MSS.0000000000001079.

  89. Гультяева В.В., Зинченко М.И., Урюмцев Д.Ю., Кривощеков С.Г., Афтанас Л.И. Физическая нагрузка при лечении депрессии. Физиологические механизмы. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (7): 112–119. DOI: 10.17116/jnevro2019119071112.

  90. Гультяева В.В., Зинченко М.И., Урюмцев Д.Ю., Кривощеков С.Г., Афтанас Л.И. Физическая нагрузка при лечении депрессии. Режимы и виды нагрузки. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (9): 136–142. DOI: 10.17116/jnevro2019119091136.

  91. Jin Y., O’Halloran J.P., Plon L., Sandman C.A., Potkin S.G. Alpha EEG predicts visual reaction time. Int. J. Neurosci. 2006; 116: 1035–1044. DOI: 10.1080/00207450600553232. PMID: 16861166.

  92. Basar E., Yordanova J., Kolev V., Basar-Eroglu C. Is the alpha rhythm a control parameter for brain responses? Biological Cybernetics. 1997; 76: 471–80. DOI: 10.1007/s004220050360. PMID: 9263433.

  93. Bornkessel I.D., Fiebach C.J., Friederici A.D., Schlesewsky M. "Capacity" reconsidered: interindividual differences in language comprehension and individual alpha frequency. Exp Psychol. 2004; 51: 279–289. DOI: 10.1027/1618-3169.51.4.279. PMID: 15620229.

  94. Rathee S., Bhatia D., Punia V., Singh R. Peak Alpha Frequency in Relation to Cognitive Performance. J Neurosci Rural Pract. 2020; 11: 416–419. DOI: 10.1055/s-0040-1712585. PMID: 32753806.

  95. Billiot K.M., Budzynski T.H., Andrasik F. EEG Patterns and Chronic Fatigue Syndrome. Journal of Neurotherapy. 1997; 2: 20–30. DOI: 10.1300/J184v02n02_04.

  96. Hülsdünker T., Mierau A., Struёder H.K. Higher Balance Task Demands are Associated with an Increase in Individual Alpha Peak Frequency. Front Hum Neurosci. 2015; 9: 695. DOI: 10.3389/fnhum.2015. 00695. PMID: 26779005.

  97. Gutmann B., Mierau A., Hülsdünker T., Hildebrand C., Przyklenk A., Hollmann W. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural Plast. 2015; 2015: 1–6. DOI: 10.1155/2015/717312. PMID: 25759762.

  98. Gutmann B., Zimmer P., Hülsdünker T., Lefebvre J., Binneböbel S., Oberste M. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neurosci Lett. 2018; 668: 159–163. DOI: 10.1016/j.neulet.2018.01.007. PMID: 29329910.

  99. Sadaghiani S., Scheeringa R., Lehongre K., Morillon B., Giraud A-L., Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci. 2010; 30: 10243–10250. DOI: 10.1523/JNEUROSCI.1004-10.2010. PMID: 20668207.

  100. Christie S., Di Fronso S., Bertollo M., Werthner P. Individual Alpha Peak Frequency in Ice Hockey Shooting Performance. Front Psychol. 2017; 8: 762. DOI: 10.3389/fpsyg.2017.00762. PMID: 28559868.

  101. Zhang Y., Lu Y, Wang D., Zhou C., Xu C. Relationship between individual alpha peak frequency and attentional performance in a multiple object tracking task among ice-hockey players. PLoS One. 2021; 16 (5): e0251443. DOI: 10.1371/journal.pone.0251443.

  102. Faubert J. Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Sci Rep. 2013; 3: 1154. DOI: 10.1038/srep01154.

  103. Hülsdünker T., Mierau A. Visual Perception and Visuomotor Reaction Speed Are Independent of the Individual Alpha Frequency. Front Neurosci. 2021; 8; 15. DOI: 026610.3389/fnins.2021.620266. PMID: 33897344. MCID: PMC8060564.

 

Поступила в редакцию 03.04.2023; принята 28.06.2023.

 

Авторский коллектив

Балиоз Наталья Владимировна – кандидат биологических наук, научный сотрудник лаборатории функциональных резервов организма, ФГБНУ «Научно-исследовательский институт нейронаук и медицины». 630117, Россия, г. Новосибирск, ул. Тимакова, 4; е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0002-5482-5986

Архипова Елизавета Евгеньевна – аспирант, ФГБОУ ВО «Новосибирский государственный университет экономики и управления». 630099, Россия, г. Новосибирск, ул. Каменская, 56; е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2599-5214

Мозолевская Наталья Владимировна – кандидат биологических наук, доцент кафедры психологии и педагогики, ФГБОУ ВО «Новосибирский государственный университет экономики и управления». 630099, Россия, г. Новосибирск, ул. Каменская, 56; е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0007-1108-0105

Кривощеков Сергей Георгиевич – доктор медицинских наук, профессор, заведующий лабораторией функциональных резервов организма, ФГБНУ «Научно-исследовательский институт нейронаук и медицины». 630117, Россия, г. Новосибирск, ул. Тимакова, 4; ФГБОУ ВО «Новосибирский государственный университет экономики и управления». 630099, Россия, г. Новосибирск, ул. Каменская, 56; е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2306-829X

 

Образец цитирования

Балиоз Н.В., Архипова Е.Е., Мозолевская Н.В., Кривощеков С.Г. Электроэнцефалографические маркеры функционального состояния центральной нервной системы в спортивной практике. Ульяновский медико-биологический журнал. 2023; 3: 30–48. DOI: 10.34014/2227-1848-2023-3-30-48.